APS Logo

Spin Seebeck effect in the multifunctional ferrimagnet Ga<sub>0.6</sub>Fe<sub>1.4</sub>O<sub>3</sub>

ORAL

Abstract

Thermo-spin current generation in Ga0.6Fe1.4O3 (GFO)/Pt are shown. The spin Seebeck performance of this system is comparable with the widely used yttrium iron garnet, likewise to what we have observed in spin Hall magnetoresistance. We also rule out the possibility of a dominant proximity effect in the thermo-spin voltage by exploring the different magnetoresistive effects in the bilayer1. In addition, by fabrication of thermo-spin devices with controlled dimensions, we are able to accurately quantify the relevant parameters of the thermal effects, obtaining more accurate and comparable values for the spin Seebeck coefficient2.

These results pave the way for the use of the magnetoelectric multiferroic GFO for energy harvesting and with a view to controlling the spin current production of NM/FMI (non-magnetic/ ferromagnetic insulator) heterostructures by an electric field.

1. Homkar, S. et al. Spin Current Transport in Hybrid Pt / Multifunctional Magnetoelectric Ga0.6Fe1.4O3 Bilayers. ACS Appl. Electron. Mater. (2021) https://doi.org/10.1021/acsaelm.1c00586

2. Anadón, A. et al. Spin Seebeck in the multifunctional ferrimagnet Ga0.6Fe1.4O3 (in preparation)

Publication: S Homkar, J.C Rojas-Sánchez et al. Spin Current Transport in Hybrid Pt/Multifunctional Magnetoelectric Ga0.6Fe1.4O3 Bilayers; ACS Appl. Electro. Materials 2021 https://doi.org/10.1021/acsaelm.1c00586<br>A. Anandon, J.C Rojas-Sánchez et al. Spin Seebeck effect in the multifunctional ferrimagnet Ga0.6Fe1.4O3 (to be submitted)

Presenters

  • Juan-Carlos Rojas-Sanchez

    Institut Jean Lamour, CNRS UMR 7198, Université de Lorraine, France, University of Lorraine, France, Institut Jean Lamour, CNRS UMR 7198, Université de Lorraine

Authors

  • Juan-Carlos Rojas-Sanchez

    Institut Jean Lamour, CNRS UMR 7198, Université de Lorraine, France, University of Lorraine, France, Institut Jean Lamour, CNRS UMR 7198, Université de Lorraine

  • Alberto Anadon

    Institut Jean Lamour, CNRS UMR 7198, Université de Lorraine, France

  • Elodie Martin

    Institut Jean Lamour, CNRS UMR 7198, Université de Lorraine, France

  • Suvidyakumar Homkar

    IPCMS, CNRS, Université Strassbourg, France

  • Benjamin Meunier

    IPCMS, CNRS, Université Strassbourg, France

  • Heloise Damas

    Institut Jean Lamour, CNRS UMR 7198, Université de Lorraine, France

  • Christophe Lefevre

    IPCMS, CNRS, Université Strassbourg, France

  • Francois Roulland

    IPCMS, CNRS, Université Strassbourg, France

  • Carsten Dubs

    INNOVENT e.V. Technologieentwicklung, Jena, Germany

  • Olivier Copie

    Institut Jean Lamour, CNRS UMR 7198, Université de Lorraine, France

  • Rafael Ramos

    CIQUS, Santiago de Compostela, Spain

  • Daniele Preziosi

    IPCMS, CNRS, Université Strassbourg, France

  • Nathalie Viart

    IPCMS, CNRS, Université Strassbourg, France

  • Sebastien Petit-Watelot

    Institut Jean Lamour, CNRS UMR 7198, Université de Lorraine, France