Bridging the length scales in ionic separations via data-driven science and machine learning
ORAL
Abstract
–
Publication: 1. Q. Lei, K. Li, D. Bhattacharya, J. Xiao, S. Kole, Q. Zhang, J. Strzalka, J. Lawrence, R. Kumar, and C.G. Arges, Counterion condensation or lack of solvation? Understanding the activity of ions in thin film block copolymer electrolytes, Journal of Materials Chemistry A, 2020, 8, 15962, https://doi.org/10.1039/D0TA04266H<br> <br>2.) M.V. Ramos-Garcés, K. Li, Q. Lei, D. Bhattacharya, S. Kole, Q. Zhang, J. Strzalka, P.P. Angelopoulou, G. Sakellariou, R. Kumar, and C.G. Arges, Understanding the ionic activity and conductivity value differences between random copolymer electrolytes and block copolymer electrolytes of the same chemistry, RSC Advances, 2021, 11, 15078-15084, https://doi.org/10.1039/D1RA02519H <br><br>3.) L. Briceno-Mena, G. Venugopalan, J.A. Romagnoli, and C.G. Arges, Machine learning for guiding high-temperature PEM fuel cells with greater power density, Patterns (Cell Press), 2021, 2, 100187, https://doi.org/10.1016/j.patter.2020.100187
Presenters
-
Christopher G Arges
Pennsylvania State University
Authors
-
Christopher G Arges
Pennsylvania State University
-
Mario V Ramos-Garcés
Pennsylvania State University
-
Qi Lei
Louisiana State University
-
Matthew L Jordan
Louisiana State University
-
Dodangodage I Senadheera
Louisiana State University
-
Ke Li
Louisiana State University
-
Revati Kumar
Louisiana State University
-
Luis Briceno-Mena
Louisiana State University
-
José A Romagnoli
Louisiana State University