APS Logo

Infrared magneto-spectroscopy in the Hofstadter butterfly regime of graphene-boron nitride moire superlattices

ORAL

Abstract

Graphene stacked on hexagonal boron nitride forms a moire superlattice system. Rotational angles close to zero degrees provide ideal moire length scales, of order ten nanometers, enabling experimental access to the fractal Hofstadter spectrum at lab scale magnetic fields. Using infrared magneto-spectroscopy, we report observations of cyclotron resonance transitions in a graphene-hexagonal boron nitride sample, having a relative alignment between the layers of ~0.9 degrees. The device shows strong satellite Dirac peaks in electronic transport that indicate it is in the Hofstadter regime. We observe splittings of the cyclotron resonance lines beyond what is seen in intrinsic monolayer graphene, likely to arise from the fractal energy levels.

Presenters

  • Yashika Kapoor

    Washington University, St. Louis

Authors

  • Yashika Kapoor

    Washington University, St. Louis

  • Jordan Russell

    Washington University, St. Louis

  • Jesse Balgley

    Washington University, St. Louis

  • Takashi Taniguchi

    National Institute for Materials Science, Tsukuba, Japan, National Institute for Materials Science, NIMS, Kyoto Univ, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Ibaraki 305-0044, Japan., 3 National Institute for Materials Science, Tsukuba, Japan, National Institute for Materials Science; 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan, National Institute of Materials Science, Tsukuba, Japan, National Institute of Materials Science, Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan, National Institute for Materials Science (Japan), International Center for Materials Nanoarchitectonics, National Institute for Materials Science, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan, Kyoto University, International Center for Materials Nanoarchitectonics, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Japan, International Center for Materials Nanoarchitectonics, National Institute for MaterialsScience, 1-1 Namiki, Tsukuba 305-0044, Japan, National Institute for Material Science, Japan, National Institute for Material Science, National Institute of Material Sciences, Japan, NIMS, Tsukuba, 2National Institute for Materials Science, Namiki 1-1, Ibaraki 305-0044, Japan., National Institute of Materials Science, Tsukuba, Ibaraki 305-0044, Japan, National Institute for Materials Science, Japan, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki Tsukuba, Ibaraki 305-0044, Japan., NIMS, Japan, National Institute for Materials Science (NIMS), NIMS. Japan, International Center for Material Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan, International Center for Material Nanoarchitectonics, National Institute for Materials Science, National Institute for Materials Science Tsukuba, National Institute for Materials Science, 1-1 Namiki, National Institute for Materials Science of Japan, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan, NIMS - National Institute for Material Science, Japan, International Center for Materials Nanoarchitectonics, National Institute for Material Science, Tsukuba, Ibaraki 305-0044, Japan., National Institute for Material Science, Tsukuba, National Institute for Materials Science, International Center for Materials Nanoarchitectonics, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan, National Institute of Material Science, National Institute for Materials Science,1-1 Namiki, Tsukuba, 305-0044, Japan

  • Kenji Watanabe

    NIMS, Research Center for Functional Materials, National Institute for Materials Science, National Institute of Materials Science, National Institue for Materials Science, National Institute for Materials Science, Japan, National Institute for Materials Science (NIMS), National Institute of Materials Science, Tsukuba, Japan, National Institute for Materials Science, NIMS, Japan

  • Erik A Henriksen

    Washington University, St. Louis