Symbolic Regression for Materials Science: A Case Study for Lattice Thermal Conductivity
ORAL
Abstract
[1] R. Ouyang et al. Phys. Rev. Mat. 2. 083802 (2018)
[2] T. A. R. Purcell et al. submitted to J. Open Source. Softw.
[3] F. Knoop et al. Phys. Rev. Mat. 4. 083809 (2020)
–
Publication: [1] Purcell, T. A. R., et al. Accelerating Material-Space Exploration by Mapping Materials Properties via Artificial Intelligence: The Case of the Lattice Thermal Conductivity. To be submitted.<br>[2] Purcell, T. A. R., et al. SISSO++: A C++ Implementation of the Sure Independence Screening and Sparisifying Operator Approach. submitted to J. Open Source. Softw.
Presenters
-
Thomas A Purcell
Fritz-Haber-Institute, Fritz-Haber Institute, The NOMAD Laboratory at the Fritz Haber Institute of the MPG
Authors
-
Thomas A Purcell
Fritz-Haber-Institute, Fritz-Haber Institute, The NOMAD Laboratory at the Fritz Haber Institute of the MPG
-
Matthias Scheffler
NOMAD Laboratory, Fritz Haber Institute of the Max Planck Society, Fritz-Haber Institute, The NOMAD Laboratory at the Fritz Haber Institute of the MPG
-
Thomas A Purcell
Fritz-Haber-Institute, Fritz-Haber Institute, The NOMAD Laboratory at the Fritz Haber Institute of the MPG
-
Christian Carbogno
NOMAD Laboratory, Fritz Haber Institute of the Max Planck Society, Fritz-Haber-Institute, The NOMAD Laboratory at the Fritz Haber Institute of the MPG