Autonomous Systems
FOCUS · W13 · ID: 48665
Presentations
-
Domain-Aware Gaussian Processes and High-Performance Mathematical Optimization for Optimal Autonomous Data Acquisition
ORAL · Invited
–
Publication: Marcus M Noack, Petrus H Zwart, Daniela M Ushizima, Masafumi Fukuto, Kevin G Yager,Katherine C Elbert, Christopher B Murray, Aaron Stein, Gregory S Doerk, Esther HRTsai, et al. Gaussian processes for autonomous data acquisition at large-scale synchrotron and neutron facilities. Nature Reviews Physics, pages 1–13, 2021.<br><br>Marcus M Noack and James A Sethian. Autonomous discovery in science and engineering.Technical report, USDOE Office of Science (SC)(United States), 2021.Marcus M Noack and James A Sethian. Advanced stationary and non-stationary kernel designs for domain-aware gaussian processes. arXiv preprint arXiv:2102.03432, 2021.<br><br>Marcus M Noack, Gregory S Doerk, Ruipeng Li, Masafumi Fukuto, and Kevin G Yager. Advances in kriging-based autonomous x-ray scattering experiments.Scientific reports,10(1):1–17, 2020.<br><br>Marcus M Noack, Gregory S Doerk, Ruipeng Li, Jason K Streit, Richard A Vaia, Kevin GYager, and Masafumi Fukuto. Autonomous materials discovery driven by gaussian process regression with inhomogeneous measurement noise and anisotropic kernels. Scientific reports, 10(1):1–16, 2020.
Presenters
-
Marcus Noack
Lawrence Berkeley National Laboratory, Lawrence Berkeley National Lab
Authors
-
Marcus Noack
Lawrence Berkeley National Laboratory, Lawrence Berkeley National Lab
-
-
Quantum compiling by deep reinforcement learning
ORAL · Invited
–
Publication: L. Moro , M. Paris, M. Restelli, E. Prati, Quantum Compiling via Deep Reinforcement Learning, Communications Physics 4, 178 (2021) DOI: 10.1038/s42005-021-00684-3
Presenters
-
Enrico Prati
Instito di Fotonica e Nanotechnologie
Authors
-
Enrico Prati
Instito di Fotonica e Nanotechnologie
-
Matteo Paris
Università di Milano
-
Lorenzo Moro
Politecnico di Milano
-
Marcello Restelli
Politecnico di Milano
-
-
Dynamic Manipulation of Ferroelectric Structures via Automated Piezoresponse Force Microscopy
ORAL · Invited
–
Presenters
-
Kyle Kelley
Oak Ridge National Laboratory, ornl, Oak Ridge National Lab
Authors
-
Kyle Kelley
Oak Ridge National Laboratory, ornl, Oak Ridge National Lab
-
Yongtao Liu
Oak Ridge National Laboratory
-
Stephen Jesse
Oak Ridge National Laboratory, University of Tennessee
-
Rama K Vasudevan
Oak Ridge National Laboratory
-
Sergei V Kalinin
Oak Ridge National Lab, Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge National Laboratory
-
-
Active Learning-Driven Automated Scanning Probe Microscopy Enables Discovery of Structure-Property Relationship
ORAL
–
Presenters
-
Yongtao Liu
Oak Ridge National Laboratory
Authors
-
Yongtao Liu
Oak Ridge National Laboratory
-
Kyle Kelley
Oak Ridge National Laboratory, ornl, Oak Ridge National Lab
-
Rama K Vasudevan
Oak Ridge National Laboratory
-
Hiroshi Funakubo
Tokyo Institute of Technology
-
Susan E Trolier-Mckinstry
The Pennsylvania State University
-
Maxim Ziatdinov
Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge National Laboratory, Oak Ridge National Lab
-
Sergei V Kalinin
Oak Ridge National Lab, Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge National Laboratory
-
-
Towards automating analysis of nonequilibrium X-ray Photon Correlation Spectroscopy with acquisition rate-limited time resolution
ORAL
–
Presenters
-
Tatiana Konstantinova
Brookhaven National Laboratory
Authors
-
Tatiana Konstantinova
Brookhaven National Laboratory
-
Lutz Wiegart
Brookhaven National Laboratory
-
Maksim Rakitin
Brookhaven National Laboratory
-
Anthony M DeGennaro
Brookhaven National Laboratory
-
Andi Barbour
NSLS-II, Brookhaven National Lab, Brookhaven National Laboratory, Brookhaven National Lab
-
-
Adaptive tuning of the latent space of encoder-decoder convolutional neural networks for virtual 6D diagnostics of time-varying charged particle beams
ORAL
–
Publication: A. Scheinker. "Adaptive Machine Learning for Time-Varying Systems: Low Dimensional Latent Space Tuning." arXiv preprint arXiv:2107.06207, 2021.<br>A. Scheinker, et al. "An adaptive approach to machine learning for compact particle accelerators." Scientific Reports 11.1, 1-11, 2021.
Presenters
-
Alexander Scheinker
Los Alamos Natl Lab
Authors
-
Alexander Scheinker
Los Alamos Natl Lab
-
-
Autonomous anomaly detection in MeV ultrafast electron diffraction
ORAL
–
Presenters
-
Mariana A Fazio
University of New Mexico
Authors
-
Mariana A Fazio
University of New Mexico
-
Salvador Sosa Guitron
University of New Mexico
-
Destry Monk
University of New Mexico
-
Junjie Li
Brookhaven National Laboratory
-
Marcus Babzien
Brookhaven National Laboratory
-
Mikhail Fedurin
Brookhaven National Laboratory
-
Mark A Palmer
Brookhaven National Laboratory
-
Sandra G Biedron
University of New Mexico, Element Aero
-
Manel Martínez-Ramón
University of New Mexico
-
-
Reinforcement learning and neutron scattering
ORAL
–
Presenters
-
William Ratcliff
GDS, National Institute of Standards and Tech, NIST
Authors
-
William Ratcliff
GDS, National Institute of Standards and Tech, NIST
-
Kate Meuse
Cornell University
-
Jessica Opsahl-Ong
Rice University
-
Paul Kienzle
National Institute of Standards and Technology, NIST Center for Neutron Research, Gaithersburg, MD, NIST, National Institute of Standards and Technology
-