APS Logo

Spin-selective hole-exciton coupling in V-doped WSe<sub>2</sub> ferromagnetic semiconductor at room temperature

POSTER

Abstract

While valley polarization with strong Zeeman splitting is the most prominent characteristic of two-dimensional (2D) transition metal dichalcogenide (TMD) semiconductors under magnetic fields, enhancement of the Zeeman splitting has been demonstrated by incorporating magnetic dopants into the host materials. Unlike Fe, Mn and Co, V is a unique dopant with distinctive features of ferromagnetic semiconducting properties at room temperature with large Zeeman shifting of band edges. Nevertheless, little known is the excitons interacting with spin-polarized carriers in V-doped TMDs. Here, we report anomalous circularly polarized photoluminescence (CPL) in a V-doped WSe2 monolayer at room temperature. Excitons couple to V-induced spin-polarized holes to generate spin-selective positive trions, leading to differences in the populations of neutral excitons and trions between left and right CPL. Using transient absorption spectroscopy, we elucidate origin of excitons and trions that are inherently distinct for defect-mediated and impurity-mediated trions. Ferromagnetic characteristics are further confirmed by the significant Zeeman splitting of nanodiamonds deposited on the V-doped WSe2 monolayer. Our findings open a venue of 2D vdW semiconductors for future low-power opto-spintronics.

Presenters

  • Lan Anh Nguyen Thi

    Sungkyunkwan Univ

Authors

  • Lan Anh Nguyen Thi

    Sungkyunkwan Univ