APS Logo

Polarization-Driven Asymmetric Electronic Response of Monolayer Graphene to Polymer Zwitterions Probed from Both Sides

POSTER

Abstract

We investigated the nature of graphene surface doping by zwitterionic polymers and the implications of weak in-plane and strong through-plane screening using a novel sample geometry that allows direct access to either the graphene or the polymer side of a graphene/polymer interface. Using both Kelvin probe and electrostatic force microscopies, we observed a significant upshift in the Fermi level in graphene of ≈ 260 meV that was dominated by a change in polarizability rather than pure charge transfer with the organic overlayer. This physical picture is supported by density functional theory (DFT) calculations which describe a redistribution of charge in graphene in response to the dipoles of the adsorbed zwitterionic moieties, analogous to a local DC Stark effect. Strong metallic-like screening of the adsorbed dipoles was observed by employing an inverted geometry, an effect identified by DFT to arise from a strongly asymmetric redistribution of charge confined to the side of graphene proximal to the zwitterion dipoles. Transport measurements confirm n-type doping with no significant impact on carrier mobility, thus demonstrating a route to desirable electronic properties in devices that combine graphene with lithographically patterned polymers.

Publication: Hight-Huf, N.; Nagar, Y.; Levi, A.; Pagaduan, J. N.; Datar, A.; Katsumata, R.; Emrick, T.; Ramasubramaniam, A.; Naveh, D.; Barnes, M. D. Polarization-Driven Asymmetric Electronic Response of Monolayer Graphene to Polymer Zwitterions Probed from Both Sides. ACS Appl. Mater. Interfaces 2021.

Presenters

  • Nicholas Hight-Huf

    University of Massachusetts Amherst Department of Chemistry, University of Massachusetts Amherst

Authors

  • Nicholas Hight-Huf

    University of Massachusetts Amherst Department of Chemistry, University of Massachusetts Amherst