APS Logo

Chemical tuning and on-chip tranmission experiments of clock transitions in molecular spin qubits

ORAL

Abstract

We report a sizeable quantum tunnelling splitting for the mononuclear Ni(II) molecular complexes [Ni(Me6tren)Cl](ClO4) (1) and [Ni(2-Imdipa)(NCS)](NCS) (2). With their S = 1 ground state and strong anisotropy, these molecules provide a realization of the simplest non-Kramers system (integer spin). The “clock transition” between levels associated with superpositions of mS = ±1 spin states, with its characteristic non-linear magnetic field dependence, has been directly monitored by heat capacity experiments. The comparison of complex 1 with a Co derivative (S = 3/2), for which tunnelling is forbidden, shows that the clock transition leads to an effective suppression of intermolecular spin–spin interactions. We also show that the splitting admits a chemical tuning via the modification of the ligand shell that determines the magnetic anisotropy. In particular, the weaker magnetic anisotropy of complex 2 makes its qubit frequency compatible with superconducting microwave circuits, and has allowed its direct detection by on-chip broadband transmission experiments.

Publication: M. Rubín-Osanz, F. Lambert, F. Shao, E. Rivière, R. Guillot, N. Suaud, N. Guihéry, D. Zueco, A.-L. Barra, T. Mallah and F. Luis, Chemical tuning of spin clock transitions in molecular monomers based on nuclear spin-free Ni(II), Chem. Sci. 12, 5123 (2021).

Presenters

  • Marcos Rubín Osanz

    Spanish National Research Council (CSIC) / University of Zaragoza

Authors

  • Marcos Rubín Osanz

    Spanish National Research Council (CSIC) / University of Zaragoza

  • François Lambert

    Paris-Saclay University

  • Marina C de Ory

    Spanish National Research Council (CSIC) / Spanish National Institute of Aerospace Technology (INTA), Centro de Astrobiología CSIC-INTA, 28850 Torrejón de Ardoz, Spain, Spanish National Research Council (CSIC)

  • Feng Shao

    Paris-Saclay University / Ocean University of China

  • Eric Rivière

    Paris-Saclay University

  • Régis Guillot

    Paris-Saclay University

  • Victor Rollano

    Spanish National Research Council (CSIC) / University of Zaragoza, Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna 12, 50009 Zaragoza, Spain.

  • Nicolas Suaud

    Paul Sabatier University

  • Nathalie Guihéry

    Paul Sabatier University

  • David Zueco

    Spanish National Research Council (CSIC) / University of Zaragoza, Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna 12, 50009 Zaragoza, Spain., Consejo Superior de Investigaciones Cientificas (CSIC), Consejo Superior de Investigaciones Cientificas (CSIC) / Universidad de Zaragoza / INMA, Spanish National Research Council (CSIC)

  • Anne L Barra

    French National Centre for Scientific Research (CNRS) / Grenoble-Alpes University

  • Alicia Gomez

    Spanish National Research Council (CSIC) / Spanish National Institute of Aerospace Technology (INTA), Centro de Astrobiología CSIC-INTA, 28850 Torrejón de Ardoz, Spain, Spanish National Research Council (CSIC)

  • Talal Mallah

    French National Centre for Scientific Research (CNRS) / Paris-Saclay University, Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS, Université Paris-Saclay, 15, rue Georges Clemenceau, 91405 Orsay Cedex, France

  • Fernando M Luis

    INMA(CSIC-U. Zaragoza), Spanish National Research Council (CSIC) / University of Zaragoza, Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna 12, 50009 Zaragoza, Spain., Instituto de Nanociencia y Materiales de Aragón (CSIC-Universidad de Zaragoza), Consejo Superior de Investigaciones Cientificas (CSIC) / Universidad de Zaragoza / INMA, Spanish National Research Council (CSIC)