Machine Learning for Quantum Matter II
FOCUS · S47 · ID: 46903
Presentations
-
Towards interpretable and reliable machines learning physics
ORAL · Invited
–
Publication: [1] A. Dawid et al. (2020). Phase detection with neural networks: interpreting the black box. New J. Phys. 22, 115001.<br>[2] N. Käming, A. Dawid, K. Kottmann, et al. (2021). Unsupervised machine learning of topological phase transitions from experimental data. Mach. Learn.: Sci. Technol. 2, 035037.<br>[3] A. Dawid et al. (2021). Hessian-based toolbox for interpretable and reliable machine learning in physics. Mach. Learn.: Sci. Technol. in press https://doi.org/10.1088/2632-2153/ac338d.
Presenters
-
Anna Dawid
University of Warsaw & ICFO - The Institute of Photonic Sciences
Authors
-
Anna Dawid
University of Warsaw & ICFO - The Institute of Photonic Sciences
-
Patrick Huembeli
École Polytechnique Fédérale de Lausanne
-
Michał Tomza
University of Warsaw
-
Maciej Lewenstein
ICFO - The Institute of Photonic Sciences & ICREA, ICFO / ICREA
-
Alexandre Dauphin
ICFO - The Institute of Photonic Sciences
-
-
Direct sampling of projected entangled-pair states
ORAL
–
Publication: https://arxiv.org/abs/2109.07356
Presenters
-
Tom Vieijra
Ghent University
Authors
-
Tom Vieijra
Ghent University
-
Jutho Haegeman
Ghent University
-
Frank Verstraete
Ghent University
-
Laurens Vanderstraeten
Ghent University
-
-
Neural Network Ansatz for Finite Temperature
ORAL
–
Publication: F. Vicentini, R. Rossi, G. Carleo, under preparation (2022)
Presenters
-
Filippo Vicentini
Ecole Polytechnique Federale de Lausanne
Authors
-
Filippo Vicentini
Ecole Polytechnique Federale de Lausanne
-
Riccardo Rossi
Ecole Polytechnique Federale de Lausanne
-
Giuseppe Carleo
Ecole Polytechnique Federale de Lausanne
-
-
Neural network representation for minimally entangled typical thermal state
ORAL
–
Presenters
-
Hongwei Chen
Northeastern University
Authors
-
Hongwei Chen
Northeastern University
-
Douglas G Hendry
Northeastern University
-
Adrian E Feiguin
Northeastern University
-
-
Ground-state properties via machine learning quantum constraints
ORAL
–
Publication: P.-L. Zheng#, S.-J. Du#, and Y. Zhang*, "Ground-state properties via machine learning quantum constraints," (2021), arXiv:2105.09947 [cond-mat.str-el].<br>
Presenters
-
Pei-Lin Zheng
Peking Univ
Authors
-
Pei-Lin Zheng
Peking Univ
-
Si-Jing Du
Peking Univ
-
Yi Zhang
Peking Univ
-
-
Gauge invariant autoregressive neural network for quantum lattice models
ORAL
–
Publication: arXiv:2101.07243
Presenters
-
Zhuo Chen
Massachusetts Institute of Technology
Authors
-
Zhuo Chen
Massachusetts Institute of Technology
-
Di Luo
Massachusetts Institute of Technology, University of Illinois at Urbana-Champaign
-
Kaiwen Hu
University of Michigan—Ann Arbor
-
Zhizhen Zhao
University of Illinois at Urbana-Champaign
-
Vera M Hur
University of Illinois at Urbana-Champaign
-
Bryan K Clark
University of Illinois at Urbana-Champaign
-
-
Looking Under the Hood: How Convolutional Neural Networks Successfully Approximate Quantum Spin Hamiltonians
ORAL
–
Presenters
-
Shah Saad Alam
Rice University
Authors
-
Shah Saad Alam
Rice University
-
Yilong Ju
Rice University
-
Jonathan Minoff
Rice University
-
Fabio Anselmi
Baylor College of Medicine
-
Ankit B Patel
Rice University, Baylor College of Medicine
-
Han Pu
Rice University
-
-
A first principles informed machine learning model for helical nanostructures
ORAL
–
Presenters
-
Hsuan Ming Yu
University of California, Los Angeles
Authors
-
Amartya S Banerjee
University of California, Los Angeles
-
Susanta Ghosh
Michigan Technological University
-
Shashank Pathrudkar
Michigan Technological University
-
Hsuan Ming Yu
University of California, Los Angeles
-
-
Machine learning frequency-resolved phonon transport from ultrafast electron diffraction
ORAL
–
Presenters
-
Zhantao Chen
Massachusetts Institute of Technology MI, Massachusetts Institute of Technology
Authors
-
Zhantao Chen
Massachusetts Institute of Technology MI, Massachusetts Institute of Technology
-
Nina Andrejevic
Massachusetts Institute of Technology MI
-
Tongtong Liu
Massachusetts Institute of Technology MI
-
Xiaozhe Shen
SLAC National Accelerator Laboratory, SLAC, SLAC Natl Accelerator Lab
-
Thanh Nguyen
Massachusetts Institute of Technology MI
-
Nathan C Drucker
Harvard University
-
Mingda Li
Massachusetts Institute of Technology, Massachusetts Institute of Technology MI
-
-
Interpretable Machine Learning for Materials Design
ORAL
–
Presenters
-
Timur Bazhirov
Exabyte Inc.
Authors
-
Timur Bazhirov
Exabyte Inc.
-
James Dean
Exabyte Inc.
-
Rahul Bhowmik
Polaron Analytics
-
Sergey Barabash
Intermolecular, Inc.
-
Matthias Scheffler
NOMAD Laboratory, Fritz Haber Institute of the Max Planck Society, Fritz-Haber Institute, The NOMAD Laboratory at the Fritz Haber Institute of the MPG
-
Thomas A Purcell
Fritz-Haber-Institute, Fritz-Haber Institute, The NOMAD Laboratory at the Fritz Haber Institute of the MPG
-
-
Improving the Accuracy and Efficiency of Nonlocal Exchange Functionals via Machine Learning
ORAL
–
Publication: Bystrom, K. and Kozinsky, B., 2021. CIDER: An Expressive, Non-local Feature Set for Machine Learning Density Functionals with Exact Constraints. arXiv preprint arXiv:2109.02788.
Presenters
-
Kyle Bystrom
Harvard University
Authors
-
Kyle Bystrom
Harvard University
-
Boris Kozinsky
Harvard University
-