APS Logo

Electrostatic coupling control of two-gate metal levels CMOS-based quantum dots

ORAL

Abstract

Recent demonstrations of high-fidelity gates using CMOS-based silicon quantum dots (QDs) have boosted the interest of the semiconductor industry to extend their applications to quantum computing. The importance of having individual control of the QD chemical potential and its coupling interactions (QD-QD and QD-reservoir) motivated the development of different architectures with increased number of metal levels.

In this presentation we show the versatility of QD arrays designed with two gate layers, and fabricated in a industry-compatible CMOS process. In order to show that such architectures can achieve the desired electrostatic coupling control and requested tunability, we demonstrate that we can control the transition from single to double QD regimes. Results are obtained through transport characterization. When the two QDs are tuned into a weakly-coupled regime, bias triangles are observed, as well as their excited states. Finally, we show that the tunnel-coupling control is effective in accumulation mode, where the QDs can be formed at the back interface of the silicon channel. The demonstration of high electrostatic control over the coupling between the QDs is an important step towards successful manipulation of spins for qubit applications.

Publication: T. Bédécarrats et al., "A new FDSOI spin qubit platform with 40nm effective control pitch", IEDM 2021. [accepted for publication]

Presenters

  • Bruna C Paz

    Univ. Grenoble Alpes, CNRS, Institut Néel, Institut Néel, Grenoble, France

Authors

  • Bruna C Paz

    Univ. Grenoble Alpes, CNRS, Institut Néel, Institut Néel, Grenoble, France

  • Victor El-Homsy

    Univ. Grenoble Alpes, CNRS, Institut Néel, Institut Néel, Grenoble, France

  • David J Niegemann

    Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France, Univ. Grenoble Alpes, CNRS, Institut Néel, Institut Neel, Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, Grenoble, France

  • Bernhard Klemt

    Univ. Grenoble Alpes, CNRS, Institut Néel

  • Emmanuel Chanrion

    Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France, Univ. Grenoble Alpes, CNRS, Institut Néel, Institut Néel, Grenoble, France, Univ. Grenoble Alpes, CNRS, Institut Néel, Grenoble, Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, Grenoble, France

  • Vivien Thiney

    Univ. Grenoble Alpes, CEA, Leti, Grenoble, France, Univ. Grenoble Alpes, CEA, Leti, Univ. Grenoble Alpes, CEA, Leti, Grenoble, Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, Grenoble, France, Institut Néel CNRS

  • Baptiste Jadot

    Univ. Grenoble Alpes, CEA, Leti, Grenoble, France

  • Pierre-André Mortemousque

    Univ. Grenoble Alpes, CEA, Leti, Grenoble, France, Univ. Grenoble Alpes, CEA, Leti, CEA, LETI, Grenoble, France, Univ. Grenoble Alpes, CEA, Leti, Grenoble

  • Benoit Bertrand

    CEA, LETI, Minatec Campus, Grenoble F-38000, France, CEA-Leti, CEA Grenoble, Univ. Grenoble Alpes, CEA, Leti, CEA, LETI, Grenoble, France, CEA grenoble

  • Thomas Bédécarrats

    Univ. Grenoble Alpes, CEA, Leti

  • Heimanu Niebojewski

    Univ. Grenoble Alpes, CEA, Leti

  • François Perruchot

    Univ. Grenoble Alpes, CEA, Leti

  • Silvano De Franceschi

    CEA Grenoble, Univ. Grenoble Alpes, CEA, IRIG, CEA, INAC-PHELIQS, Grenoble, France, CEA grenoble

  • Maud Vinet

    CEA-Leti

  • Matias Urdampilleta

    Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France, Institute Neel, Univ. Grenoble Alpes, CNRS, Institut Néel, Institut Néel, Grenoble, France, Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, Grenoble, France

  • Tristan Meunier

    Institute Neel, Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France, Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, Grenoble, France