APS Logo

Dissipative phase transition with driving-controlled spatial dimension and diffusive boundary conditions

ORAL

Abstract

We investigate theoretically and experimentally a first-order dissipative phase transition, with diffusive boundary conditions and the ability to tune the spatial dimension of the system [1]. The considered physical system is a planar semiconductor microcavity in the strong light-matter coupling regime, where polariton excitations are injected by a quasi-resonant optical driving field. The spatial dimension of the system from 1D to 2D is tuned by designing the intensity profile of the driving field. We investigate the emergence of criticality by increasing the spatial size of the driven region. The system is nonlinear due to polariton-polariton interactions and the boundary conditions are diffusive because the polaritons can freely diffuse out of the driven region. We show that no phase transition occurs using a 1D driving geometry, while for a 2D geometry we do observe both in theory and experiments the emergence of a first-order phase transition.

Publication: [1] Z. Li, F. Claude, T. Boulier, E. Giacobino, Q. Glorieux, A. Bramati and C. Ciuti, Dissipative phase transition with driving-controlled spatial dimension and diffusive boundary conditions, arXiv:2110.09922 [cond-mat.other]

Presenters

  • Zejian Li

    Université de Paris

Authors

  • Zejian Li

    Université de Paris

  • Ferdinand Claude

    Société Française de Physique, Sorbonne Université

  • Thomas Boulier

    Sorbonne Université

  • Elisabeth Giacobino

    Laboratoire Kastler Brossel, Sorbonne Université

  • Quentin Glorieux

    Laboratoire Kastler Brossel, Sorbonne Université

  • Alberto Bramati

    Laboratoire Kastler Brossel, Sorbonne Université

  • Cristiano Ciuti

    Université de Paris, Laboratoire Matériaux et Phénomènes Quantiques (MPQ),CNRS-UMR 7162, France, University de Paris, Université de Paris, Univ de Paris