APS Logo

Polymer-ceramic composite electrolyte for high energy lithium batteries

ORAL · Invited

Abstract

Solid-state electrolytes are on their way to enable the next generation of energy storage architectures with higher energy density and improved safety. However, each major class of solid electrolytes has intrinsic weaknesses. By combining different classes of solid electrolytes, such as a polymer electrolyte and an oxide ceramic electrolyte, the ultimate goal is to overcome the intrinsic weaknesses of each component and develop a composite electrolyte to achieve high ionic conductivity, good mechanical properties, good chemical stability and adhesion with the electrodes, and thin sheet processability.  In this presentation, both fundamental and applied aspects of composite electrolytes will be discussed. Fundamentally, ion mobility and segmental dynamics at the polymer-ceramic interface are examined by a combined quasi-elastic neutron scattering/solid-state nuclear magnetic resonance methodology. The origin of interfacial resistance for ion transport across the polymer-ceramic interface is elucidated. On the practical side, strategies to achieve optimum interfacial structures is discussed. Limitations of each strategy and an outlook of the development of composite electrolyte will be summarized.  

Publication: 1. Pandian, A. S.; Chen, X. C.; Chen, J.; Lokitz, B. S.; Ruther, R. E.; Yang, G.; Lou, K.; Nanda, J.; Delnick, F. M.; Dudney, N. J., Facile and scalable fabrication of polymer-ceramic composite electrolyte with high ceramic loadings. Journal of Power Sources 2018, 390, 153-164.<br>2. Chen, X. C.; Liu, X. M.; Pandian, A. S.; Lou, K.; Delnick, F. M.; Dudney, N. J., Determining and Minimizing Resistance for Ion Transport at the Polymer/Ceramic Electrolyte Interface. Acs Energy Letters 2019, 4, 1080-1085.<br>3. Chen, X. C.; Sacci, R. L.; Osti, N. C.; Tyagi, M.; Wang, Y.; Palmer, M. J.; Dudney, N. J., Study of segmental dynamics and ion transport in polymer–ceramic composite electrolytes by quasi-elastic neutron scattering. Molecular Systems Design & Engineering 2019, 4, 379-385.<br>4. Palmer, M. J.; Kalnaus, S.; Dixit, M. B.; Westover, A. S.; Hatzell, K. B.; Dudney, N. J.; Chen, X. C., A three-dimensional interconnected polymer/ceramic composite as a thin film solid electrolyte. Energy Storage Materials 2020, 26, 242-249.<br>5. Peng, J.; Xiao, Y.; Clarkson, D. A.; Greenbaum, S. G.; Zawodzinski, T. A.; Chen, X. C., A Nuclear Magnetic Resonance Study of Cation and Anion Dynamics in Polymer–Ceramic Composite Solid Electrolytes. ACS Applied Polymer Materials 2020, 2, 1180-1189.<br>6. Chen, X. C.; Zhang, Y. M.; Merrill, L. C.; Soulen, C.; Lehmann, M. L.; Schaefer, J. L.; Du, Z. J.; Saito, T.; Dudney, N. J., Gel composite electrolyte - an effective way to utilize ceramic fillers in lithium batteries. Journal of Materials Chemistry A 2021, 9 (10), 6555-6566.<br>7. Chen, X. C.; Soulen, C.; Burdette-Trofimov, M. K.; Liu, C.; Tyagi, M.; Heroux, L.; Doucet, M.; Veith, G.M., The origin of rate limitations in solid polymer batteries – a structure and segmental dynamics study on the cathode, in preparation

Presenters

  • Chelsea Chen

    Oak Ridge National Lab

Authors

  • Chelsea Chen

    Oak Ridge National Lab