APS Logo

Room temperature 1D excitonic guides

ORAL

Abstract

The emerging field of excitonics, made possible by the remarkable advancement in material science and nanofabrication, presents the possibility of improving on the usual on-chip interconnect paradigm of using electrons. In this work, we report a room temperature 1D excitonic guide in tungsten diselenide (WSe2) monolayer, where photo generated excitons drift under a gradient in the exciton potential. The excitonic potential energy gradient is created by engineering the band structure along the guide using underlying nanostructures. [1] We achieve drift length in excess of 2.5 μm with 60.8 % efficiency and exciton drift velocity reaching ~8 × 105 cm2/s. [2] In addition, we observe fluence dependent excitonic drift suggesting contributions from nonequilibrium many-body effects. [3] These results are critical for realizing optoexcitonic circuits: a next generation ultrafast and efficient data communication and processing platform.  

Publication: [1] D. F. Cordovilla Leon, Z. Li, S. W. Jang, C. H. Cheng, and P. B. Deotare, Exciton Transport in Strained Monolayer WSe 2, Appl. Phys. Lett. 113(25), 252101 (2018).<br>[2] Z. Li, D. F. Cordovilla Leon, W. Lee, K. Datta, Z. Lyu, J. Hou, T. Taniguchi, K. Watanabe, E. Kioupakis, and P. B. Deotare, Dielectric Engineering for Manipulating Exciton Transport in Semiconductor Monolayers, Nano Lett. 21,19, 8409-8417, (2021).<br>[3] D. F. Cordovilla Leon, Z. Li, S. W. Jang, and P. B. Deotare, Hot Exciton Transport in WS E2 Monolayers, Phys. Rev. B 100 (24), 241401 (2019).

Presenters

  • Zidong Li

    University of Michigan

Authors

  • Zidong Li

    University of Michigan

  • Kanak Datta

    University of Michigan

  • Darwin F Cordovilla Leon

    Univeristy of Michigan

  • Parag B Deotare

    University of Michigan