APS Logo

Thermal transport in complex materials: from glasses to van der Waals heterostructures

ORAL · Invited

Abstract

Nanometer-thin thermal insulators and nanodevices that enable the dynamic control of thermal transport are long-sought-after in nanoelectronics and renewable energy technologies.   

To design such systems, it is necessary to understand and compute phonon transport in complex non-crystalline materials.

Here I will illustrate an approach, named Quasi-Harmonic Green-Kubo, to calculate the thermal conductivity of solids, which naturally bridges the Boltzmann kinetic theory in crystals and the Allen-Feldman model in glasses. This approach completes a set of lattice dynamics and molecular dynamics tools that allow us to address phonon transport at the atomic scale in a broad range of materials.

Applications to glassy alloys, alloy superlattices, intercalated layered materials, and van der Waals heterostructures show that our atomistic simulation toolbox provides a parameter-free framework to predict and interpret heat transport in a wide range of materials and (nano)devices across from the ballistic to the diffusive regime.

Publication: (1) Lundgren, N. W.; Barbalinardo, G.; Donadio, D. Mode Localization and Suppressed Heat Transport in Amorphous Alloys. Phys. Rev. B 2021, 103 (2), 024204. https://doi.org/10.1103/PhysRevB.103.024204.<br>(2) Neogi, S.; Donadio, D. Anisotropic In-Plane Phonon Transport in Silicon Membranes Guided by Nanoscale Surface Resonators. Phys. Rev. Applied 2020, 14 (2), 024004. https://doi.org/10.1103/PhysRevApplied.14.024004.<br>(3) Ferrando-Villalba, P.; Chen, S.; Lopeandía, A. F.; Alvarez, F. X.; Alonso, M. I.; Garriga, M.; Santiso, J.; Garcia, G.; Goñi, A. R.; Donadio, D.; Rodríguez-Viejo, J. Beating the Thermal Conductivity Alloy Limit Using Long-Period Compositionally Graded Si 1– x Ge x Superlattices. J. Phys. Chem. C 2020, 124 (36), 19864–19872. https://doi.org/10.1021/acs.jpcc.0c06410.<br>(4) Barbalinardo, G.; Chen, Z.; Lundgren, N. W.; Donadio, D. Efficient Anharmonic Lattice Dynamics Calculations of Thermal Transport in Crystalline and Disordered Solids. Journal of Applied Physics 2020, 128 (13), 135104. https://doi.org/10.1063/5.0020443.<br>(5) Sood, A.; Xiong, F.; Chen, S.; Cheaito, R.; Lian, F.; Asheghi, M.; Cui, Y.; Donadio, D.; Goodson, K. E.; Pop, E. Quasi-Ballistic Thermal Transport Across MoS 2 Thin Films. Nano Lett. 2019, 19 (4), 2434–2442. https://doi.org/10.1021/acs.nanolett.8b05174.<br>(6) Isaeva, L.; Barbalinardo, G.; Donadio, D.; Baroni, S. Modeling Heat Transport in Crystals and Glasses from a Unified Lattice-Dynamical Approach. Nat Commun 2019, 10 (1), 3853. https://doi.org/10.1038/s41467-019-11572-4.<br>(7) Chen, S.; Sood, A.; Pop, E.; Goodson, K. E.; Donadio, D. Strongly Tunable Anisotropic Thermal Transport in MoS 2 by Strain and Lithium Intercalation: First-Principles Calculations. 2D Mater. 2019, 6 (2), 025033. https://doi.org/10.1088/2053-1583/ab0715.<br>(8) Sood, A.; Xiong, F.; Chen, S.; Wang, H.; Selli, D.; Zhang, J.; McClellan, C. J.; Sun, J.; Donadio, D.; Cui, Y.; Pop, E.; Goodson, K. E. An Electrochemical Thermal Transistor. Nat Commun 2018, 9 (1), 4510. https://doi.org/10.1038/s41467-018-06760-7.<br>(9) Rojo, M. M.; Li, Z.; Sievers, C.; Bornstein, A. C.; Yalon, E.; Deshmukh, S.; Vaziri, S.; Bae, M.-H.; Xiong, F.; Donadio, D.; Pop, E. Thermal Transport across Graphene Step Junctions. 2D Mater. 2018, 6 (1), 011005. https://doi.org/10.1088/2053-1583/aae7ea.<br>(10) Xiong, S.; Selli, D.; Neogi, S.; Donadio, D. Native Surface Oxide Turns Alloyed Silicon Membranes into Nanophononic Metamaterials with Ultralow Thermal Conductivity. Phys. Rev. B 2017, 95 (18), 180301. https://doi.org/10.1103/PhysRevB.95.180301.<br>

Presenters

  • Davide Donadio

    University of California Davis

Authors

  • Davide Donadio

    University of California Davis