APS Logo

Thermalization dynamics of a U(1) lattice gauge theory on a Bose-Hubbard quantum simulator

ORAL

Abstract

Gauge theories form the foundation of modern physics, with applications ranging from elementary particle physics and early-universe cosmology to condensed matter systems. We demonstrate the emergence of irreversible thermal equilibrium behavior for far-from-equilibrium gauge field, by quantum simulating the fundamental unitary dynamics of a U(1) symmetric gauge field theory. While this is in general beyond the capabilities of classical computers, it is made possible through the experimental implementation of a 71-site cold atomic system in an optical superlattice. The highly constrained gauge theory dynamics is encoded in a one-dimensional Bose--Hubbard simulator, which couples fermionic matter fields through dynamical gauge fields. We investigate the far-from-equilibrium evolution and the equilibration to a steady state well approximated by a thermal ensemble. Our work establishes a new realm for the investigation of elusive phenomena, such as Schwinger pair production and string-breaking, and paves the way for more complex higher-dimensional gauge theories on quantum synthetic matter devices.

Publication: [1] arXiv:2107.13563<br>[2] Nature 587, 392–396 (2020)

Presenters

  • Guo-Xian Su

    Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg

Authors

  • Guo-Xian Su

    Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg

  • Zhaoyu Zhou

    Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg

  • Jad C Halimeh

    INO-CNR BEC Center and Department of Physics, Uni Trento

  • Robert Ott

    Institute for Theoretical Physics, Ruprecht-Karls-Universität Heidelberg

  • Hui Sun

    Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg

  • Philipp Hauke

    INO-CNR BEC Center and Department of Physics, University of Trento

  • Bing Yang

    Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg

  • Zhensheng Yuan

    University of Science and Technology of China

  • Jürgen Berges

    Institute for Theoretical Physics, Ruprecht-Karls-Universität Heidelberg

  • Jian-Wei Pan

    University of Science and Technology of China