Spins, microwaves and quantum technologies
ORAL · Invited
Abstract
Electron spin states in semiconductor chips and superconducting microwave electronics represent two leading platforms for emerging quantum technologies in the solid-state. Spins benefit from their atomic size and ultra-long coherence times, whilst superconducting microwave circuits are easy to manufacture and respond quickly to external stimuli. Both systems are considered front-running candidates for implementing large-scale quantum computers. I will present some of our key recent developments in both platforms, from demonstrating techniques to aid in the scaling of spin-based quantum processors [1,2], to new superconducting microwave amplifiers operating at the quantum noise limit [3]. I’ll also discuss what can be achieved when these two systems are brought together to form novel spin-superconductor hybrid devices with applications in spin resonance spectroscopy [4,5].
[1] E. Vahapoglu, J. Slack-Smith, R. Leon, W. Lim, F. Hudson, T. Day, T. Tanttu, C. Yang, A. Laucht, A. Dzurak, J. J. Pla, Science Advances, eabg9158 (2021).
[2] E. Vahapoglu, J. P. Slack-Smith, R. C. C. Leon, W. H. Lim, F. E. Hudson, T. Day, J. D. Cifuentes, T. Tanttu, C. H. Yang, A. Saraiva, N. V. Abrosimov, H. -J. Pohl, M. L. W. Thewalt, A. Laucht, A. S. Dzurak, J. J. Pla, arXiv:2107.14622 (2021).
[3] D. J. Parker, M. Savytskyi, W. Vine, A. Laucht, T. Duty, A. Morello, A. L. Grimsmo, J. J. Pla, arXiv:2108.10471 (2021).
[4] A. Bienfait, J. J. Pla, Y. Kubo, X. Zhou, M. Stern, C. C. Lo, C. D. Weis, T. Schenkel, D. Vion, D. Esteve, J. J. L. Morton & P. Bertet, Nature 531, 74–77 (2016).
[5] A. Bienfait, J. J. Pla, Y. Kubo, M. Stern, X. Zhou, C. C. Lo, C. D. Weis, T. Schenkel, M. L. W. Thewalt, D. Vion, D. Esteve, B. Julsgaard, K. Mølmer, J. J. L. Morton & P. Bertet, Nature Nanotechnology 11, 253–257 (2016).
[1] E. Vahapoglu, J. Slack-Smith, R. Leon, W. Lim, F. Hudson, T. Day, T. Tanttu, C. Yang, A. Laucht, A. Dzurak, J. J. Pla, Science Advances, eabg9158 (2021).
[2] E. Vahapoglu, J. P. Slack-Smith, R. C. C. Leon, W. H. Lim, F. E. Hudson, T. Day, J. D. Cifuentes, T. Tanttu, C. H. Yang, A. Saraiva, N. V. Abrosimov, H. -J. Pohl, M. L. W. Thewalt, A. Laucht, A. S. Dzurak, J. J. Pla, arXiv:2107.14622 (2021).
[3] D. J. Parker, M. Savytskyi, W. Vine, A. Laucht, T. Duty, A. Morello, A. L. Grimsmo, J. J. Pla, arXiv:2108.10471 (2021).
[4] A. Bienfait, J. J. Pla, Y. Kubo, X. Zhou, M. Stern, C. C. Lo, C. D. Weis, T. Schenkel, D. Vion, D. Esteve, J. J. L. Morton & P. Bertet, Nature 531, 74–77 (2016).
[5] A. Bienfait, J. J. Pla, Y. Kubo, M. Stern, X. Zhou, C. C. Lo, C. D. Weis, T. Schenkel, M. L. W. Thewalt, D. Vion, D. Esteve, B. Julsgaard, K. Mølmer, J. J. L. Morton & P. Bertet, Nature Nanotechnology 11, 253–257 (2016).
–
Presenters
-
Jarryd J Pla
School of Electrical Engineering and Telecommunications, UNSW Sydney, School of Electrical Engineering and Telecommunications, UNSW Sydney, Sydney, NSW 2052, Australia, University of New South Wales
Authors
-
Jarryd J Pla
School of Electrical Engineering and Telecommunications, UNSW Sydney, School of Electrical Engineering and Telecommunications, UNSW Sydney, Sydney, NSW 2052, Australia, University of New South Wales