APS Logo

X-ray nanothermometry to improve anticancer thermal therapies

ORAL

Abstract

Treatments based on multifunctional thermal-activated nanomaterials have emerged as a promising biomedical strategy to fight cancer [1]. Temperature increments above 42°C were shown to kill cancer cells which has led to the development of nanoparticle-mediated thermo-therapeutic strategies in the fight of oncological diseases. However, these therapeutic effects have been also observed by localized nanoparticle heating without a detectable macroscopic temperature rise [2]. The precise determination of the local temperature reached in the tumour tissue is necessary to evaluate the onset of thermal doses and quantify possible side effects on healthy tissues. In this study, we investigate the potential of X-ray absorption spectroscopy technique to determine in situ the temperature reached in gold and iron oxide-based nanoparticles under therapeutic photoactivated hyperthermia [3, 4]. Experiments were performed at the Au L3-edge in BM25 beamline at the ESRF (France). We will discuss the capabilities and limitations of the technique and explore the induced heating phenomena at the nanoscale.

[1]       A. Espinosa, J. Kolosnjaj-Tabi et al. Adv, Funct. Mater. 28, 1803660 (2018).

[2]       E. Cazares-Cortés, S. Cabana et al. Adv. Drug Deliv. Rev. 138, 233 (2019).

[3]       A. Espinosa, J. Reguera et al., Small, 16, 1904960 (2020).

[4]       A. Espinosa, G. R. Castro et al. Nano Lett. 21, 769 (2021).

Publication: A. Espinosa, German R. Castro, J. Reguera, C. Castellano, J. Castillo, J. Camarero, C. Wilhelm, M. A. García, Á. Muñoz-Noval. Nano Letters 21, 769 (2021). https://pubs.acs.org/doi/10.1021/acs.nanolett.0c04477<br>A. Espinosa, J. Reguera, A. Curcio, Á. Muñoz-Noval, L. M. Liz-Marzán and C. Wilhelm. Small 16, 1904960 (2020). https://onlinelibrary.wiley.com/doi/abs/10.1002/smll.201904960

Presenters

  • Ana Espinosa

    IMDEA Nanociencia, c/ Faraday, 9, 28049 Madrid, Spain

Authors

  • Ana Espinosa

    IMDEA Nanociencia, c/ Faraday, 9, 28049 Madrid, Spain

  • German R. Castro

    Spanish CRG beamline at the European Synchrotron (ESRF), B.P. 220, F-38043 Grenoble, France and Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC, 28049 Madrid, Spain

  • Javier Reguera

    BCMaterials, Basque Center Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain

  • Carlo Castellano

    Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy

  • Javier Castillo

    IMDEA Nanociencia, c/ Faraday, 9, 28049 Madrid, Spain

  • Rosalía López-Méndez

    IMDEA Nanociencia, c/ Faraday, 9, 28049 Madrid, Spain

  • Julio Camarero

    IMDEA Nanociencia, C/Faraday 9, 28049 Madrid, Spain, IMDEA Nanociencia, c/ Faraday, 9, 28049 Madrid, Spain and Departamento de Física de la Materia Condensada and Instituto 'Nicolás Cabrera', UAM, 28049, Madrid, Spain

  • Claire Wilhelm

    Laboratoire Matière et Systèmes, Complexes MSC, UMR 7057, CNRS & University Paris Diderot, 75205, Paris Cedex 13, France

  • Miguel Ángel García

    Departamento de Electrocerámica, Instituto de Cerámica y Vidrio, ICV-CSIC, Kelsen 5, 28049 Madrid, Spain

  • Álvaro Muñoz-Noval

    Dpto. Física Materiales, Facultad CC. Físicas, Universidad Complutense de Madrid, 28040 Madrid, Spain