APS Logo

Programmable operations between bosonic quantum elements

ORAL · Invited

Abstract

The realisation of robust universal quantum computation with any platform ultimately requires both the coherent storage of quantum information and (at least) one entangling operation between individual elements. The use of multiphoton states encoded in superconducting microwave cavities as logical qubits is a promising route to preserve the coherence of quantum information against naturally-occurring errors. However, operations between such encoded qubits can be challenging due to the lack of intrinsic coupling between them. 

 

In this talk, I will discuss the recent experimental work on engineering a coherent and tunable bilinear coupling between two otherwise isolated microwave quantum memories in a three-dimensional circuit QED architecture. Building upon this coupling, we also demonstrate programmable interference between stationary quantum modes and realise robust entangling operations between two encoded qubits. Our results provide a crucial primitive for universal quantum computation using bosonic modes.

Publication: 10.1038/s41586-019-0970-4

Presenters

  • Yvonne Y Gao

    Natl Univ of Singapore

Authors

  • Yvonne Y Gao

    Natl Univ of Singapore

  • Brian Lester

    Atom Computing

  • Kevin S Chou

    Quantum Circuits, Inc.

  • Luigi Frunzio

    Yale University

  • Michel H Devoret

    Yale University

  • Liang Jiang

    University of Chicago

  • Steven M Girvin

    Yale University

  • Robert J Schoelkopf

    Yale University