Physics of Machine Learning II
ORAL · K09 · ID: 46541
Presentations
-
Finding Spin Glass Ground States Through Deep Reinforcement Learning
ORAL
–
Presenters
-
Mutian o Shen
Washington University in St. Louis
Authors
-
Mutian o Shen
Washington University in St. Louis
-
Zohar Nussinov
Washington University in St. Louis
-
Yang-Yu Liu
Harvard Medical School, Brigham and Women's Hospital (BWH)
-
Changjun Fan
National University of Defense Technology
-
Yizhou Sun
University of California, Los Angeles
-
Zhong Liu
National University of Defense Technology
-
-
The random energy landscape of soft-spin networks and its application to combinatorial optimizations
ORAL
–
Publication: Atsushi Yamamura, Hideo Mabuchi, Surya Ganguli "The random energy landscape of soft-spin networks and its application to combinatorial optimizations", To be published
Presenters
-
Atsushi Yamamura
Stanford University
Authors
-
Atsushi Yamamura
Stanford University
-
Hideo Mabuchi
Stanford University
-
Surya Ganguli
Stanford, Stanford University
-
-
From classification to models: When do SVMs discover physical features?
ORAL
–
Presenters
-
Arabind Swain
Emory University
Authors
-
Arabind Swain
Emory University
-
Ilya M Nemenman
Emory University, Emory
-
-
Machine learning probing universality class of four models
ORAL
–
Publication: V. Chertenkov, L. Shchur, Universality classes and machine learning, J. Phys.: Conf. Ser. 1740 (2021) 012003<br>V. Chertenkov, E. Burovski, L. Shchur, On the accuracy of the critical properties estimation of statistical mechanics models using deep learning approach, in preparation
Presenters
-
Lev Shchur
Landau ITP - Chernogolovka
Authors
-
Lev Shchur
Landau ITP - Chernogolovka
-
Evgeni Burovski
HSE University, National Research University Higher School of Economics
-
Vladislav Chertenkov
HSE University
-
-
Inverse design of nucleation seeds
ORAL
–
Presenters
-
Ella M King
Harvard University
Authors
-
Ella M King
Harvard University
-
Chrisy Xiyu Du
Harvard University
-
Michael P Brenner
Harvard University
-
-
Machine learning enabled large-scale quantum kinetic Monte Carlo simulations of the Falicov-Kimball model
ORAL
–
Presenters
-
Sheng Zhang
Univ of Virginia, University of Virginia
Authors
-
Sheng Zhang
Univ of Virginia, University of Virginia
-
Gia-Wei Chern
University of Virginia, Department of Physics, University of Virginia
-
Puhan Zhang
University of Virginia
-
-
Biased Monte Carlo sampling in RBMs
ORAL
–
Publication: -Nicolás Bereux, Aurélien Decelle, Cyril Furtlehner, Beatriz Seoane, in preparation.<br>-Aurélien Decelle, Cyril Furtlehner, Beatriz Seoane, accepted for NIPS (2021). Pre-print: ArXiv:2105.13889
Presenters
-
Beatriz Seoane
Universidad Complutense de Madrid, Univ Complutense
Authors
-
Beatriz Seoane
Universidad Complutense de Madrid, Univ Complutense
-
Aurélien Decelle
Universidad Complutense de Madrid
-
Cyril Furtlehner
Paris Saclay University, Inria, Université Paris Saclay
-
Nicolas Bereux
Paris Saclay University
-
-
Nonequilibrium Monte Carlo for unfreezing variables near computational phase transitions
ORAL
–
Presenters
-
Masoud Mohseni
Google LLC
Authors
-
Masoud Mohseni
Google LLC
-
Daniel K Eppens
Google LLC
-
Federico Ricci-Tersenghi
Dipartimento di Fisica, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy
-
Johan Strumpfer
Google LLC
-
Alan Ho
Google LLC
-
Raffaele Marino
Dipartimento di Fisica, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy
-
Vasil Denchev
Google LLC
-
Sergei V Isakov
Google LLC
-
Sergio Boixo
Google LLC
-
Hartmut Neven
Google LLC
-
-
Gauge freedoms, symmetries, and the interpretability of sequence-function relationships
ORAL
–
Presenters
-
Justin B Kinney
Cold Spring Harbor Laboratory
Authors
-
Justin B Kinney
Cold Spring Harbor Laboratory
-
Anna Posfai
Cold Spring Harbor Laboratory
-
David M McCandlish
Cold Spring Harbor Laboratory
-
-
Exploring relative advantages of dual vs single dimensionality reduction
ORAL
–
Presenters
-
Eslam Abdelaleem
Emory University
Authors
-
Eslam Abdelaleem
Emory University
-
K. Michael Martini
Emory University
-
Ilya M Nemenman
Emory University, Emory
-
-
An unsupervised neural network learns reproducible and interpretable representations of active matter systems
ORAL
–
Publication: Liu CJ, Li J, Szurek M, Fakhri N. in prep. Measuring irreversibility in biological active matter.
Presenters
-
Chih-Wei Joshua Liu
Massachusetts Institute of Technology
Authors
-
Chih-Wei Joshua Liu
Massachusetts Institute of Technology
-
Nikta Fakhri
Massachusetts Institute of Technology, Department of Physics, Massachusetts Institute of Technology, Massachusetts Institute of Technology MI
-
Junang Li
Massachusetts Institute of Technology, Department of Physics, Massachusetts Institute of Technology, Massachusetts Institute of Technology MIT, Massachusetts Institute of Technology MI
-
Michal Szurek
Massachusetts Institute of Technology MIT
-
-
Criticality in Deep Neural Networks using Jacobian(s)
ORAL
–
Presenters
-
Darshil H Doshi
Brown University
Authors
-
Darshil H Doshi
Brown University
-
Andrey Gromov
Brown University
-
Tianyu He
Brown University
-
-
Understanding Layer Normalization in Deep Neural Networks
ORAL
–
Presenters
-
Tianyu He
Brown University
Authors
-
Tianyu He
Brown University
-
Darshil H Doshi
Brown University
-
Andrey Gromov
Brown University
-
-
Information Bottleneck for Data-driven Renormalization without Locality
ORAL
–
Presenters
-
K. Michael Martini
Emory University
Authors
-
K. Michael Martini
Emory University
-
Joseph L Natale
Emory University
-
Ilya M Nemenman
Emory University, Emory
-