APS Logo

Symmetry-broken Chern insulators and Rashba-like Landau level crossings in magic angle twisted bilayer graphene

ORAL

Abstract

Flat bands in magic-angle twisted bilayer graphene (MATBG) have recently emerged as a rich platform to explore strong correlations, superconductivity and magnetism. However, the phases of MATBG in a magnetic field and what they reveal about the zero-field phase diagram remain relatively uncharted. We report a rich sequence of wedge-like regions of quantized Hall conductance with Chern numbers C = ±1, ±2, ±3 and ±4, which nucleate from integer fillings of the moiré unit cell v = ±3, ±2, ±1 and 0, respectively. The exact sequence and correspondence of the Chern numbers and filling factors suggest that these states are directly driven by electronic interactions, which specifically break the time-reversal symmetry in the system. The analysis of Landau-level crossings from higher energy bands enables a parameter-free comparison to a newly derived ‘magic series’ of level crossings in a magnetic field and provides constraints on the parameters of the Bistritzer–MacDonald MATBG Hamiltonian [1]. Additionally, we observed the re-entrance of insulating states at v = +2, ±3 of the moiré unit cell of MATBG upon applying an external magnetic field close to the full flux quantum Φ/Φ0 = 1 of the superlattice unit cell (B = 25θ2 T).

Publication: 1. I. Das et al, Nature Physics, 17, 710-714, 2021

Presenters

  • Ipsita Das

    ICFO-The Institute of Photonic Sciences, ICFO-Institute of Photonic Sciences

Authors

  • Ipsita Das

    ICFO-The Institute of Photonic Sciences, ICFO-Institute of Photonic Sciences

  • Xiaobo Lu

    Institute of Photonic Sciences, ETH Zurich, ICFO - Institute of Photonic Sciences, ETH Zürich, ICFO

  • Jonah Herzog-Arbeitman

    Princeton University

  • Zhida Song

    Princeton University

  • Kenji Watanabe

    National Institute for Materials Science, Tsukuba, Japan, National Institute for Materials Science, NIMS, Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan., Research Center for Functional Materials, National Institute for Materials Science, Advanced, Materials Laboratory, NIMS, 3 National Institute for Materials Science, Tsukuba, Japan, National Institute for Materials Science; 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan, National Institute of Materials Science, Tsukuba, Japan, National Institute of Materials Science, Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan, National Institute for Materials Science (Japan), National Institute for Materials Science, Japan, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan, Research Center for Functional Materials, Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan, Research Center for Functional Materials, National Institute for Materials Science, Japan, Research Center for Functional Materials, National Institute for Materials Science, 1-1Namiki, Tsukuba 305-0044, Japan, National Institute for Material Science, Japan, National Institute for Material Science, National Institute of Material Sciences, Japan, NIMS, Tsukuba, 2National Institute for Materials Science, Namiki 1-1, Ibaraki 305-0044, Japan., National Institute of Materials Science, Tsukuba, Ibaraki 305-0044, Japan, National Institute for Materials Science Japan, NIMS, Japan, nims, National Institute for Materials Science, Research Center for Functional Materials, Japan, National Institute for Materials Science Tsukuba, National Institute for Materials Science, 1-1 Namiki, National Institute for Materials Science of Japan, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan, NIMS - National Institute for Material Science, Japan, Research Center for Functional Materials, National Institute for Material Science, Tsukuba, Ibaraki, 305-0044, Japan., National Institute for Material Science, Tsukuba, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan, National Institute for Materials Science (NIMS), National Institute for Materials Science, Research Center for Functional Materials, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan, National Institute of Material Science, Kyoto Univ, National Institute for Materials Science,1-1 Namiki, Tsukuba, 305-0044, Japan

  • Takashi Taniguchi

    National Institute for Materials Science, Tsukuba, Japan, National Institute for Materials Science, NIMS, Kyoto Univ, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Ibaraki 305-0044, Japan., 3 National Institute for Materials Science, Tsukuba, Japan, National Institute for Materials Science; 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan, National Institute of Materials Science, Tsukuba, Japan, National Institute of Materials Science, Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan, National Institute for Materials Science (Japan), International Center for Materials Nanoarchitectonics, National Institute for Materials Science, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan, Kyoto University, International Center for Materials Nanoarchitectonics, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Japan, International Center for Materials Nanoarchitectonics, National Institute for MaterialsScience, 1-1 Namiki, Tsukuba 305-0044, Japan, National Institute for Material Science, Japan, National Institute for Material Science, National Institute of Material Sciences, Japan, NIMS, Tsukuba, 2National Institute for Materials Science, Namiki 1-1, Ibaraki 305-0044, Japan., National Institute of Materials Science, Tsukuba, Ibaraki 305-0044, Japan, National Institute for Materials Science, Japan, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki Tsukuba, Ibaraki 305-0044, Japan., NIMS, Japan, National Institute for Materials Science (NIMS), NIMS. Japan, International Center for Material Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan, International Center for Material Nanoarchitectonics, National Institute for Materials Science, National Institute for Materials Science Tsukuba, National Institute for Materials Science, 1-1 Namiki, National Institute for Materials Science of Japan, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan, NIMS - National Institute for Material Science, Japan, International Center for Materials Nanoarchitectonics, National Institute for Material Science, Tsukuba, Ibaraki 305-0044, Japan., National Institute for Material Science, Tsukuba, National Institute for Materials Science, International Center for Materials Nanoarchitectonics, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan, National Institute of Material Science, National Institute for Materials Science,1-1 Namiki, Tsukuba, 305-0044, Japan

  • Andrei B Bernevig

    Princeton University

  • Dmitri K Efetov

    Institute of Photonic Sciences, ICFO-The Institute of Photonic Sciences