APS Logo

Entanglement purification and protection in a superconducting quantum network

ORAL

Abstract


High-fidelity quantum entanglement is a key resource for quantum communication and distributed quantum computing, enabling quantum state teleportation, dense coding, and quantum encryption. Any sources of decoherence in the communication channel however degrade entanglement fidelity, thereby increasing the error rates of entangled state protocols. Entanglement purification provides a method to alleviate these non-idealities, by distilling impure states into higher-fidelity entangled states. Here we demonstrate the entanglement purification of Bell pairs shared between two remote superconducting quantum nodes connected by a moderately lossy, 1-meter long superconducting communication cable. We use a purification process to correct the dominant amplitude damping errors caused by transmission through the cable, with fractional increases in fidelity as large as 25%, achieved for higher damping errors. The best final fidelity the purification achieves is 94.09±0.98%. In addition, we use both dynamical decoupling and Rabi driving to protect the entangled states from local noise, increasing the effective qubit dephasing time by a factor of four, from 3 μs to 12 μs. These methods demonstrate the potential for the generation and preservation of very high-fidelity entanglement in a superconducting quantum communication network.

Presenters

  • Haoxiong Yan

    University of Chicago

Authors

  • Haoxiong Yan

    University of Chicago

  • Youpeng Zhong

    University of Chicago; Southern University of Science and Technology, Southern University of Science and Techn

  • Hung-Shen Chang

    University of Chicago

  • Ming-Han Chou

    University of Chicago

  • Christopher R Conner

    University of Chicago

  • Joel Grebel

    University of Chicago

  • Rhys G Povey

    University of Chicago

  • Audrey Bienfait

    Ecole Normale Superieure de Lyon, University of Chicago; Ecole Normale Superieure de Lyon

  • Etienne Dumur

    University of Chicago; Universite Grenoble Alpes, CEA

  • Andrew N Cleland

    University of Chicago, Argonne National Laboratory; University of Chicago