Transport in Ionic Polymer Membranes for Large-Scale Energy Conversion and Storage
ORAL · Invited
Abstract
New polymer membranes are needed to advance energy storage and conversion technologies for distributed and grid-scale applications. We have recently demonstrated new ion-conducting polymer membranes that have achieved excellent performance and long-lifetime stability in vanadium redox flow batteries, a leading technology candidate for deployment in renewable power networks and grid-scale energy storage systems with sizes ranging from 10s to 100s of megawatts. By tuning the nanoscopic self-assembly of the ionic domains in the polymers, we are able to increase the cycle life of the device by impeding vanadium ion transport through the membrane while facilitating high conductivity in the electrolyte to maintain the battery current density. For instance, by decreasing the vanadium permeability of the membrane by a factor of two, we have been able to double the lifetime of the device, which provides significant life-cycle cost savings. We have also demonstrated membranes with nearly zero vanadium permeability that show 100 % coulombic efficiency in flow battery charge-discharge cycling tests. Currently, we are working on demonstrating these membranes over 100s of charge-discharge cycles. In this talk, transport of ions, water, and active redox species through ion-containing polymer membranes will be discussed.
–
Presenters
-
Michael Hickner
Pennsylvania State University
Authors
-
Michael Hickner
Pennsylvania State University