APS Logo

Learning in Physical Systems

INVITED · G14 · ID: 17861






Presentations

  • How a time-reversal-invariant physical system can be turned into a self-learning machine

    ORAL · Invited

    Publication: Self-learning Machines based on Hamiltonian Echo Backpropagation, Victor Lopez-Pastor, Florian Marquardt, arXiv 2103.04992 (2021)

    Presenters

    • Florian Marquardt

      Max Planck Inst for Sci Light, Friedrich-Alexander University Erlangen-Nürnberg, Friedrich-Alexander University Erlangen-Nürnberg, Max Planck Institute for the Science of Light, Friedrich-Alexander University Erlangen-

    Authors

    • Florian Marquardt

      Max Planck Inst for Sci Light, Friedrich-Alexander University Erlangen-Nürnberg, Friedrich-Alexander University Erlangen-Nürnberg, Max Planck Institute for the Science of Light, Friedrich-Alexander University Erlangen-

    • Victor Lopez-Pastor

      Max Planck Institute for the Science of Light

    View abstract →

  • Multifunctional networks using local training rules

    ORAL · Invited

    Publication: Local rules for fabricating allosteric networks. Nidhi Pashine. Phys. Rev. Materials 5, 065607<br>Multifunctionality in variable stiffness metamaterials. Nidhi Pashine, Amir M Nasab, Rebecca Kramer-Bottiglio (in preparation)

    Presenters

    • Nidhi Pashine

      Yale University

    Authors

    • Nidhi Pashine

      Yale University

    View abstract →

  • Decentralized, Physics-Driven Learning

    ORAL · Invited

    Publication: S Dillavou, M Stern, AJ Liu, DJ Durian. Demonstration of Decentralized Physics-Driven Learning. ArXiv (2021) https://arxiv.org/abs/2108.00275

    Presenters

    • Sam J Dillavou

      University of Pennsylvania

    Authors

    • Sam J Dillavou

      University of Pennsylvania

    • Menachem Stern

      University of Pennsylvania

    • Marc Z Miskin

      University of Pennsylvania

    • Andrea J Liu

      University of Pennsylvania

    • Douglas J Durian

      University of Pennsylvania

    View abstract →