Data Science, Artificial Intelligence and Machine Learning II
FOCUS · G13 · ID: 48670
Presentations
-
TBA
ORAL · Invited
–
Presenters
-
Rupak Chatterjee
Stevens Institute of Technology
Authors
-
Rupak Chatterjee
Stevens Institute of Technology
-
-
TBA
ORAL · Invited
–
Presenters
-
Kristin Persson
Lawrence Berkeley National Laboratory
Authors
-
Kristin Persson
Lawrence Berkeley National Laboratory
-
-
Developing a GPU/CPU Gaussian Process Regression code for molecular properties
ORAL
–
Presenters
-
Alvaro Vazquez-Mayagoitia
Argonne National Laboratory
Authors
-
Alvaro Vazquez-Mayagoitia
Argonne National Laboratory
-
Jose L Mendoza-Cortes
Michigan State University
-
Murat Keceli
Argonne National Laboratory
-
Sean M Stafford
Florida State University
-
-
Ultra-Fast Force Fields (UF<sup>3</sup>) framework for machine-learning interatomic potentials
ORAL
–
Publication: S. R. Xie, M. Rupp, and R. G. Hennig, "Ultra-fast interpretable machine-learning potentials", preprint arXiv:2110.00624 (2021).
Presenters
-
Stephen R Xie
Department of Materials Science and Engineering, University of Florida, KBR Inc., Intelligent Systems Division, NASA Ames Research Center, University of Florida
Authors
-
Stephen R Xie
Department of Materials Science and Engineering, University of Florida, KBR Inc., Intelligent Systems Division, NASA Ames Research Center, University of Florida
-
Robert Schmid
Department of Computer and Information Science, University of Konstanz, Germany
-
Matthias Rupp
Department of Computer and Information Science, University of Konstanz, Germany
-
Richard G. G Hennig
University of Florida, Department of Materials Science and Engineering, University of Florida, Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
-
-
ParticleGrid: A Library for 3D Molecular Representation for Deep Learning
ORAL
–
Presenters
-
Ethan Ferguson
Binghamton University
Authors
-
Shehtab Zaman
Binghamton University
-
Kenneth Chiu
Binghamton University
-
Ethan Ferguson
Binghamton University
-
Mauricio Araya
Total Energies
-
Denis Akhiyarov
Total Energies
-
Cecile Pereira
Total Energies
-
-
MaterialEyes: Utilizing literature to characterize materials from images
ORAL
–
Publication: [1] https://github.com/MaterialEyes/exsclaim<br>[2] E Schwenker, W Jiang, T Spreadbury, N Ferrier, O Cossairt, MKY Chan, "EXSCLAIM!--An automated pipeline for the construction of labeled materials imaging datasets from literature," arXiv preprint arXiv:2103.10631. <br>[3] W Jiang, E Schwenker, T Spreadbury, N Ferrier, MKY Chan, O Cossairt, "A Two-stage Framework for Compound Figure Separation," 2021 IEEE International Conference on Image Processing (ICIP), DOI: 10.1109/ICIP42928.2021.9506171.<br>[4] W Jiang, E Schwenker, T Spreadbury, K Li, MKY Chan, O Cossairt, "Plot2Spectra: an Automatic Spectra Extraction Tool," arXiv preprint arXiv:2107.02827.
Presenters
-
Weixin Jiang
Northwestern University
Authors
-
Weixin Jiang
Northwestern University
-
Eric Schwenker
Argonne National Laboratory
-
Trevor Spreadbury
Argonne National Laboratory
-
Oliver Cossairt
Northwestern University
-
Maria K Chan
Argonne National Laboratory
-
-
Discovering Conservation Laws via Manifold Learning
ORAL
–
Presenters
-
Peter Y Lu
Massachusetts Institute of Technology, Massachusetts Institute of Technology MIT
Authors
-
Peter Y Lu
Massachusetts Institute of Technology, Massachusetts Institute of Technology MIT
-
Rumen Dangovski
Massachusetts Institute of Technology
-
Marin Soljačić
Massachusetts Institute of Technology, Massachusetts Institute of Technology MIT
-
-
Deep Learning for Bayesian Optimization of High-Dimensional Scientific Problems
ORAL
–
Publication: Kim, S., Lu, P. Y., Loh, C., Smith, J., Snoek, J., & Soljačić, M. (2021). Scalable and Flexible Deep Bayesian Optimization with Auxiliary Information for Scientific Problems. arXiv preprint arXiv:2104.11667.
Presenters
-
Samuel Kim
Massachusetts Institute of Technology MIT
Authors
-
Samuel Kim
Massachusetts Institute of Technology MIT
-
Peter Y Lu
Massachusetts Institute of Technology, Massachusetts Institute of Technology MIT
-
Charlotte Loh
Massachusetts Institute of Technology MIT
-
Marin Soljačić
Massachusetts Institute of Technology, Massachusetts Institute of Technology MIT
-
Jasper Snoek
Google Research
-
Jamie Smith
Google Research
-
-
Finite Element Network Analysis of the static response of 1D and 2D Structures
ORAL
–
Publication: Jokar, M. and Semperlotti, F., 2021. Finite element network analysis: A machine learning based computational framework for the simulation of physical systems. Computers & Structures, 247, p.106484. <br>Jokar, M. and Semperlotti, F., "Two-Dimensional Finite Element Network Analysis: Formulation and Static Analysis of Structural Assemblies", under review in Computers & structures. <br>
Presenters
-
Mehdi Jokar
Purdue University, School of Mechanical Engineering, Ray W. Herrick Laboratories, Purdue University, West Lafayette, IN
Authors
-
Mehdi Jokar
Purdue University, School of Mechanical Engineering, Ray W. Herrick Laboratories, Purdue University, West Lafayette, IN
-
Fabio Semperlotti
Purdue University, School of Mechanical Engineering, Ray W. Herrick Laboratories, Purdue University, West Lafayette, IN
-