APS Logo

Reinforcement Learning assisted Pulse Shaping for Superconducting Qubit Readout

ORAL

Abstract

The readout performance of resource-efficient quantum processors comprising multiple superconducting qubits is often not on par with that of qubit-gate operations. Nonidealities such as crosstalk limit the readout performance. Some of these nonidealities can be mitigated or compensated by qubit-state discrimination or qubit-readout pulse shaping. Quantum error correction protocols depend on fast and efficient readout. Quick resonator ring-up and ring-down in a dispersive readout scheme ensure fast measurements and limited qubit dephasing in future operations. This talk focuses on readout pulse shaping for multiple superconducting qubits using deep reinforcement learning. Relative to conventional readout methods, our results reveal that deep reinforcement learning can significantly reduce measurement times.

Presenters

  • Benjamin Lienhard

    Massachusetts Institute of Technology MIT

Authors

  • Benjamin Lienhard

    Massachusetts Institute of Technology MIT

  • Antti Vepsalainen

    Massachusetts Institute of Technology MIT

  • Cole Hoffer

    Massachusetts Institute of Technology MIT

  • Luke C Govia

    Quantum Engineering and Computing, Raytheon BBN Technologies, IBM TJ Watson Research Center, BBN Technology - Massachusetts

  • Vilhelm L Andersen Woltz

    Massachusetts Institute of Technology MIT

  • David K Kim

    MIT Lincoln Lab, MIT Lincoln Laboratory

  • Alexander Melville

    MIT Lincoln Laboratory, MIT Lincoln Lab

  • Bethany Huffman

    MIT Lincoln Lab

  • Jonilyn L Yoder

    MIT Lincoln Lab, MIT Lincoln Laboratory

  • Mollie E Schwartz

    MIT Lincoln Lab, MIT Lincoln Laboratory

  • Terry P Orlando

    Massachusetts Institute of Technology MIT

  • William D Oliver

    Massachusetts Institute of Technology MIT, Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology Research Laboratory of Electronics, MIT Lincoln Laboratory and Department of Electrical Engineering & Computer Science and Department of Physics, Massachusetts Institute of Technology