Three-Dimensional Numerical Simulations of BEC Transport Using Shortcuts to Adiabaticity
ORAL
Abstract
We report on our numerical simulations of high-fidelity, fast quantum control of Bose-Einstein condensates (BECs) as we extend them to full 3D solutions of the Gross-Pitaevskii equation. We simulate a 3D painted potential that provides complete confinement of the atoms. Painted potentials allow for arbitrary and dynamic traps, which control the spatial transport of the BEC. To achieve high quantum fidelity after transport, we implement shortcuts-to-adiabaticity (STAs) to design the BEC trajectory in our simulations. STAs allow fast movement while suppressing excitations that can result due to the rapid transitions of the quantum state. In our 3D simulations, quantum fidelities resulting from different, experimentally viable transport times and trap depths are compared. Using the measured frequencies of the different traps and by simulating transport over multiples of those periods, we seek to identify and analyze a possible cause of lower than expected post-transport fidelities.
–
Presenters
-
Christopher J Larson
Miami University
Authors
-
Christopher J Larson
Miami University