APS Logo

Electrical and thermoelectric transport in random-edged graphene quantum dots in the lowest Landau level

ORAL

Abstract

Etch-defined graphene quantum dots have inherent randomness on their edges which can generate disorder. Under quantizing magnetic fields, such disorder broadens Landau levels in the system, except the lowest Landau level (LLL) at the charge neutrality point, which remains sharply degenerate due to the chiral symmetry of graphene. The combination of quantum confinement and disorder effects in the partially filled LLL may generate novel non-Fermi liquid behavior with distinct electrical and thermal signatures. We report measurements of electrical conductance and thermopower through an etch-defined graphene island coupled to high-quality graphene reservoirs in a perpendicular magnetic field at low temperatures. The carrier densities in the island and reservoirs are independently tunable, enabling complete or partial transmission or reflection of quantum Hall edge states from the reservoir through the island at certain gate configurations, despite strong spatial confinement. We will discuss the implications of electrical and thermoelectric transport through the graphene quantum dot under strong magnetic fields, where random edge disorder enables strong interactions between localized states in the dot in the lowest Landau level.

Presenters

  • Laurel E Anderson

    Harvard University

Authors

  • Laurel E Anderson

    Harvard University

  • Antti Laitinen

    QTF CoE, Aalto University, Harvard University

  • Alexander Kruchkov

    Dept of Physics, Harvard University, Harvard University; EPFL; ETHZ

  • Kenji Watanabe

    National Institute for Materials Science, Tsukuba, Japan, National Institute for Materials Science, NIMS, Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan., Research Center for Functional Materials, National Institute for Materials Science, Advanced, Materials Laboratory, NIMS, 3 National Institute for Materials Science, Tsukuba, Japan, National Institute for Materials Science; 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan, National Institute of Materials Science, Tsukuba, Japan, National Institute of Materials Science, Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan, National Institute for Materials Science (Japan), National Institute for Materials Science, Japan, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan, Research Center for Functional Materials, Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan, Research Center for Functional Materials, National Institute for Materials Science, Japan, Research Center for Functional Materials, National Institute for Materials Science, 1-1Namiki, Tsukuba 305-0044, Japan, National Institute for Material Science, Japan, National Institute for Material Science, National Institute of Material Sciences, Japan, NIMS, Tsukuba, 2National Institute for Materials Science, Namiki 1-1, Ibaraki 305-0044, Japan., National Institute of Materials Science, Tsukuba, Ibaraki 305-0044, Japan, National Institute for Materials Science Japan, NIMS, Japan, nims, National Institute for Materials Science, Research Center for Functional Materials, Japan, National Institute for Materials Science Tsukuba, National Institute for Materials Science, 1-1 Namiki, National Institute for Materials Science of Japan, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan, NIMS - National Institute for Material Science, Japan, Research Center for Functional Materials, National Institute for Material Science, Tsukuba, Ibaraki, 305-0044, Japan., National Institute for Material Science, Tsukuba, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan, National Institute for Materials Science (NIMS), National Institute for Materials Science, Research Center for Functional Materials, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan, National Institute of Material Science, Kyoto Univ, National Institute for Materials Science,1-1 Namiki, Tsukuba, 305-0044, Japan

  • Takashi Taniguchi

    National Institute for Materials Science, Tsukuba, Japan, National Institute for Materials Science, NIMS, Kyoto Univ, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Ibaraki 305-0044, Japan., 3 National Institute for Materials Science, Tsukuba, Japan, National Institute for Materials Science; 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan, National Institute of Materials Science, Tsukuba, Japan, National Institute of Materials Science, Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan, National Institute for Materials Science (Japan), International Center for Materials Nanoarchitectonics, National Institute for Materials Science, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan, Kyoto University, International Center for Materials Nanoarchitectonics, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Japan, International Center for Materials Nanoarchitectonics, National Institute for MaterialsScience, 1-1 Namiki, Tsukuba 305-0044, Japan, National Institute for Material Science, Japan, National Institute for Material Science, National Institute of Material Sciences, Japan, NIMS, Tsukuba, 2National Institute for Materials Science, Namiki 1-1, Ibaraki 305-0044, Japan., National Institute of Materials Science, Tsukuba, Ibaraki 305-0044, Japan, National Institute for Materials Science, Japan, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki Tsukuba, Ibaraki 305-0044, Japan., NIMS, Japan, National Institute for Materials Science (NIMS), NIMS. Japan, International Center for Material Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan, International Center for Material Nanoarchitectonics, National Institute for Materials Science, National Institute for Materials Science Tsukuba, National Institute for Materials Science, 1-1 Namiki, National Institute for Materials Science of Japan, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan, NIMS - National Institute for Material Science, Japan, International Center for Materials Nanoarchitectonics, National Institute for Material Science, Tsukuba, Ibaraki 305-0044, Japan., National Institute for Material Science, Tsukuba, National Institute for Materials Science, International Center for Materials Nanoarchitectonics, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan, National Institute of Material Science, National Institute for Materials Science,1-1 Namiki, Tsukuba, 305-0044, Japan

  • Philip Kim

    Harvard University