APS Logo

Magnetism and Mottness in the unfrustrated triangular lattice Hubbard model: a cellular dynamical mean-field study

ORAL

Abstract

We investigate the phase diagram of the unfrustrated triangular lattice Hubbard model in a center-focused cellular dynamical mean-field theory (CDMFT) approach using impurity clusters of 4, 7 and 19 sites [1,2]. We investigate the Mott metal-to-insulator transition and crossover region in terms of these cluster sizes. Using a magnetic symmetry-broken approach of the CDMFT, allowing for a rotations of spins on the Bloch sphere, we are able to investigate the magnetic ordering of the different cluster schemes.

Publication: [1] Alexander Wietek, Riccardo Rossi, Fedor Šimkovic IV, Marcel Klett, Philipp Hansmann, Michel Ferrero, E. Miles Stoudenmire, Thomas Schäfer, Antoine Georges, Phys. Rev. X 11, 041013 (2021).<br>[2] M. Klett, N. Wentzell, T. Schäfer, F. Šimkovic IV, O. Parcollet, S. Andergassen, and P. Hansmann, Phys. Rev. Research 2, 033476 (2020).

Presenters

  • Marcel Klett

    Max Planck Research Group "Theory of Strongly Correlated Quantum Matter" (SCQM), Max Planck Institute for Solids State Research, Stuttgart, Germany, Max Planck Research Group "Theory of Strongly Correlated Quantum Matter" (SCQM), Max Planck Institute for Solid State Research, Stuttgart, Germany

Authors

  • Marcel Klett

    Max Planck Research Group "Theory of Strongly Correlated Quantum Matter" (SCQM), Max Planck Institute for Solids State Research, Stuttgart, Germany, Max Planck Research Group "Theory of Strongly Correlated Quantum Matter" (SCQM), Max Planck Institute for Solid State Research, Stuttgart, Germany

  • Michel Ferrero

    Ecole Polytechnique, École Polytechnique, École Polytechnique, Palaiseau

  • Philipp Hansmann

    Universität Erlangen-Nürnberg, Friedrich-Alexander-University Erlangen-Nuernberg, Friedrich-Alexander-Universität Erlangen-Nuernberg

  • Thomas Schaefer

    Max Planck Research Group "Theory of Strongly Correlated Quantum Matter" (SCQM), Max Planck Institute for Solids State Research, Stuttgart, Germany, Max Planck Research Group, Max Planck Research Group "Theory of Strongly Correlated Quantum Matter" (SCQM), Max Planck Institute for Solid State Research, Stuttgart, Germany