APS Logo

Analysis and mitigation of interface losses in transmon qubit

ORAL

Abstract

Reducing losses in superconducting qubit circuits is critical for enabling the development of large-scale quantum computing architectures.  Qualitative and quantitative models of qubit performance are a powerful tool for understanding and reducing these losses.  To generate such models, we tailor device geometies and circuit parameters to maximize sensitivity to specific loss mechanisms. These tailored devices function as 'test structures' that can be co-fabricated with standard designs to develop accurate qubit loss models.   We present the results of a series of studies that investigate losses in transmon qubits resulting from capacitor and Josephson junction dielectric layers, fabrication residues, microwave packaging, and background quasiparticles.  As part of this approach, we develop the fabrication processes and EM modeling techniques necessary for accurately modeling dielectric losses.  We furthermore apply these results to improve our qubits and demonstrate mean T1 and T2 times in excess of 200 microseconds (Q ~ 4.5 million).

Presenters

  • Greg Calusine

    MIT Lincoln Laboratory, MIT Lincoln Lab

Authors

  • Greg Calusine

    MIT Lincoln Laboratory, MIT Lincoln Lab

  • Kyle Serniak

    MIT Lincoln Lab, MIT Lincoln Laboratory

  • Alexander Melville

    MIT Lincoln Laboratory, MIT Lincoln Lab

  • Wayne Woods

    MIT Lincoln Lab

  • David K Kim

    MIT Lincoln Lab, MIT Lincoln Laboratory

  • Bethany M Niedzielski

    MIT Lincoln Lab, MIT Lincoln Laboratory

  • Thomas M Hazard

    MIT Lincoln Lab, MIT Lincoln Laboratory

  • Jonilyn L Yoder

    MIT Lincoln Lab, MIT Lincoln Laboratory

  • Mollie E Schwartz

    MIT Lincoln Lab, MIT Lincoln Laboratory

  • William D Oliver

    Massachusetts Institute of Technology MIT, Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology Research Laboratory of Electronics, MIT Lincoln Laboratory and Department of Electrical Engineering & Computer Science and Department of Physics, Massachusetts Institute of Technology