Analysis and mitigation of interface losses in transmon qubit
ORAL
Abstract
Reducing losses in superconducting qubit circuits is critical for enabling the development of large-scale quantum computing architectures. Qualitative and quantitative models of qubit performance are a powerful tool for understanding and reducing these losses. To generate such models, we tailor device geometies and circuit parameters to maximize sensitivity to specific loss mechanisms. These tailored devices function as 'test structures' that can be co-fabricated with standard designs to develop accurate qubit loss models. We present the results of a series of studies that investigate losses in transmon qubits resulting from capacitor and Josephson junction dielectric layers, fabrication residues, microwave packaging, and background quasiparticles. As part of this approach, we develop the fabrication processes and EM modeling techniques necessary for accurately modeling dielectric losses. We furthermore apply these results to improve our qubits and demonstrate mean T1 and T2 times in excess of 200 microseconds (Q ~ 4.5 million).
–
Presenters
Greg Calusine
MIT Lincoln Laboratory, MIT Lincoln Lab
Authors
Greg Calusine
MIT Lincoln Laboratory, MIT Lincoln Lab
Kyle Serniak
MIT Lincoln Lab, MIT Lincoln Laboratory
Alexander Melville
MIT Lincoln Laboratory, MIT Lincoln Lab
Wayne Woods
MIT Lincoln Lab
David K Kim
MIT Lincoln Lab, MIT Lincoln Laboratory
Bethany M Niedzielski
MIT Lincoln Lab, MIT Lincoln Laboratory
Thomas M Hazard
MIT Lincoln Lab, MIT Lincoln Laboratory
Jonilyn L Yoder
MIT Lincoln Lab, MIT Lincoln Laboratory
Mollie E Schwartz
MIT Lincoln Lab, MIT Lincoln Laboratory
William D Oliver
Massachusetts Institute of Technology MIT, Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology Research Laboratory of Electronics, MIT Lincoln Laboratory and Department of Electrical Engineering & Computer Science and Department of Physics, Massachusetts Institute of Technology