APS Logo

Microwave activated two-qubit gate for fluxonium qubits via a tunable-transmon coupler

ORAL

Abstract

Qubit lifetimes in superconducting transmon based quantum computers are a leading cause of gate infidelity. Furthermore, the transmon’s anharmonicity gives rise to frequency crowding on multi-qubit devices and limits the gate speed. The fluxonium qubit is a promising alternative to transmons, with coherence times reaching the order of milliseconds and anharmonicities on the order of gigahertz. In this work, we present a device containing two fluxonium qubits connected by a tunable-transmon coupler. By utilizing the higher levels of the fluxonium qubits and the transmon excited state, we explore the potential of a microwave activated CPHASE gate. We present results on a device designed to operate in a parameter space that has large qubit-to-qubit couplings and a reduced always-on ZZ interaction. This architecture is expected to facilitate faster, higher fidelity two-qubit gates.

Presenters

  • Leon Ding

    Massachusetts Institute of Technology MIT, Massachusetts Institute of Technology MI

Authors

  • Leon Ding

    Massachusetts Institute of Technology MIT, Massachusetts Institute of Technology MI

  • Youngkyu Sung

    Massachusetts Institute of Technology MIT

  • Bharath Kannan

    Massachusetts Institute of Technology MIT, Massachusetts Institute of Technology MI

  • Agustin Di Paolo

    Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA, Universite de Sherbrooke, MIT, Massachusetts Institute of Technology MIT, Research Laboratory of Electronics, Massachusetts Institute of Technology, Massachusetts Institute of Technology

  • Junyoung An

    Massachusetts Institute of Technology MI, Massachusetts Institute of Technology MIT

  • Max Hays

    Yale University, Department of Electrical Engineering & Computer Science and Department of Physics, Massachusetts Institute of Technology

  • Roni Winik

    Massachusetts Institute of Technology MIT

  • Kyle Serniak

    MIT Lincoln Lab, MIT Lincoln Laboratory

  • Thomas M Hazard

    MIT Lincoln Lab, MIT Lincoln Laboratory

  • David K Kim

    MIT Lincoln Lab, MIT Lincoln Laboratory

  • Bethany M Niedzielski

    MIT Lincoln Lab, MIT Lincoln Laboratory

  • Alexander Melville

    MIT Lincoln Laboratory, MIT Lincoln Lab

  • Jonilyn L Yoder

    MIT Lincoln Lab, MIT Lincoln Laboratory

  • Mollie E Schwartz

    MIT Lincoln Lab, MIT Lincoln Laboratory

  • Devin L Underwood

    IBM TJ Watson Research Center

  • Terry P Orlando

    Massachusetts Institute of Technology MIT

  • Simon Gustavsson

    Massachusetts Institute of Technology MIT, Massachusetts Institute of Technology

  • William D Oliver

    Massachusetts Institute of Technology MIT, Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology Research Laboratory of Electronics, MIT Lincoln Laboratory and Department of Electrical Engineering & Computer Science and Department of Physics, Massachusetts Institute of Technology