Play. Pause. Rewind. Measuring local entropy production and extractable work in active matter
ORAL
Abstract
Time-reversal symmetry breaking and entropy production are universal features of nonequilibrium phenomena. Despite its importance in the physics of active and living systems, the entropy production of systems with many degrees of freedom has remained of little practical significance because the high-dimensionality of their state space makes it difficult to measure. We introduce a local measure of entropy production and a numerical protocol to estimate it. We establish a connection between the entropy production and extractability of work in a given region of the system and show how this quantity depends crucially on the degrees of freedom being tracked. We validate our approach in theory, simulation, and experiments by considering systems of active Brownian particles undergoing motility induced phase separation, as well as active Brownian particles and E. Coli in a rectifying device in which the time-reversal asymmetry of the particle dynamics couples to spatial asymmetry to reveal its effects on a macroscopic scale.
–
Publication: B. Guo, S. Ro, A. Shih, T. V. Phan, R. H. Austin, S. Martiniani, D. Levine, P. M. Chaikin, Play. Pause. Rewind. Measuring local entropy production and extractable work in active matter, preprint arXiv:2105.12707
Presenters
-
Stefano Martiniani
University of Minnesota, Dept. of Chemical Engineering, University of Minnesota, Minneapolis, MN
Authors
-
Stefano Martiniani
University of Minnesota, Dept. of Chemical Engineering, University of Minnesota, Minneapolis, MN
-
Buming Guo
New York Univ NYU, New York University (NYU)
-
Sunghan Ro
Technion IIT
-
Aaron Shih
University of Minnesota
-
Trung V Phan
Princeton University
-
Robert H Austin
Princeton University
-
Dov Levine
Technion - Israel Institute of Technology
-
Paul M Chaikin
New York Univ NYU