Machine Learning Defect Properties of Semiconductors
ORAL
Abstract
–
Publication: 1. A. Mannodi-Kanakkithodi et al., "Comprehensive Computational Study of Partial Lead Substitution in Methylammonium Lead Bromide", Chemistry of Materials 31 (10), 3599–3612 (2019).<br>2. A. Mannodi-Kanakkithodi et al., "Machine learned impurity level prediction in semiconductors: the example of Cd-based chalcogenides", npj Computational Materials 6, 39 (2020).<br>3. A. Mannodi-Kanakkithodi et al., "Defect Energetics in Pseudo-Cubic Mixed Halide Lead Perovskites from First-Principles", Journal of Physical Chemistry C. 124, 31, 16729–16738 (2020).<br>4. F. G. Sen et al., "Computational Design of Passivants for CdTe Grain Boundaries", Solar Energy Materials and Solar Cells 232, 111279 (2021).<br>5. A. Mannodi-Kanakkithodi et al., "Universal Machine Learning Framework for Impurity Level Prediction in Group IV, III-V and II-VI Semiconductors", under review. PREPRINT: https://doi.org/10.21203/rs.3.rs-723035/v1 (2021).<br>6. A. Mannodi-Kanakkithodi et al., "Accelerated Screening of Functional Atomic Impurities in Halide Perovskites using High-Throughput Computations and Machine Learning", under review.<br>7. M. P. Polak et al., "Machine Learning for Impurity Charge-State Transition Levels in Semiconductors from Elemental Properties using Multi-Fidelity datasets", under review.
Presenters
-
Arun Kumar Mannodi Kanakkithodi
Purdue University
Authors
-
Arun Kumar Mannodi Kanakkithodi
Purdue University
-
Xiaofeng Xiang
University of Washington
-
Jiaqi Yang
Purdue University
-
Laura Jacoby
University of Washington
-
Maria K Chan
Argonne National Laboratory