APS Logo

Tuning coherent-phonon heat transport in oxide superlattices.

ORAL

Abstract

Accessing the regime of coherent phonon propagation in nanostructures opens new possibilities to control the thermal conductivity in energy harvesting devices, phononic circuits, etc. Here we discuss the contribution of coherent phonons to the thermal conductivity of LaCoO3/SrTiO3 and PbTiO3/SrTiO3 superlattices, from 25K to 300 K, and over a wide range of periods and thicknesses. We demonstrate that the contribution of coherent phonons to these superlattices is relevant in the whole period length and can be substantially reduced by small variations of the periodicity. Actually, by using slightly aperiodic strucures, we have being able to reduce the thermal conductivity of the superlattices by 20%, at room temperature. This may have an interesting application in the development of low thermal conductivity devices, in which maintaining a relatively large thickness and clean interfaces is important for not deteriorating electrical transport, as in thermoelectrics. We also discuss the role of interface mixing and epitaxial relaxation as an extrinsic, material dependent key parameter for understanding the thermal conductivity of oxide superlattices, as well as the effect of cooperative ferroelectric domains in PbTiO3/SrTiO3 superlattices.

Presenters

  • Francisco Rivadulla

    University of Santiago de Compostela

Authors

  • Francisco Rivadulla

    University of Santiago de Compostela

  • David Bugallo

    Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química-Física, Universidade de Santiago de Compostela, 15782 Santiago d

  • Eric Langenberg

    Department of Condensed Matter Physics, Institute of Nanoscience and Nanotechnology (IN2UB), Universi-ty of Barcelona, Spain

  • Noa Varela-Dominguez

    University of Santiago de Compostela, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química-Física, Universidade de Santiago de Compostela, 15782 Santiago d

  • Enrique Carbo-Argibay

    International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga s/n, 4715-330 Braga, Braga, Portugal

  • Adolfo Otero-Fumega

    Department of Applied Physics, Aalto University, FI-00076 Aalto, Finland.

  • Victor Pardo

    University of Santiago de Compostela, Departamento de Física Aplicada, Universidade de Santiago de Compostela, 15782 Santiago de Composte-la, Spain.

  • Irene Lucas

    Instituto de Nanociencia y Materiales de Aragón, Universidad de Zaragoza and CSIC, 50018 Zaragoza, Spain, Instituto de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza and Consejo Superior de Investigaciones Científicas, 50009 Zaragoza, Spain.

  • Luis Morellon

    Instituto de Nanociencia y Materiales de Aragón, Universidad de Zaragoza and CSIC, 50018 Zaragoza, Spain, Instituto de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza and Consejo Superior de Investigaciones Científicas, 50009 Zaragoza, Spain.

  • Araceli Gutierrez-Llorente

    Escuela Superior de Ciencias Experimentales y Tecnologıa, Universidad Rey Juan Carlos, Madrid 28933, Spain