Statistical Physics Meets Machine Learning
FOCUS · B42 · ID: 22631
Presentations
-
Statistical physics insights on learning in high dimensions
ORAL · Invited
–
Presenters
-
Francesca Mignacco
Institute of Theoretical Physics, CEA Saclay
Authors
-
Francesca Mignacco
Institute of Theoretical Physics, CEA Saclay
-
-
Effective Theory of Deep Neural Networks
ORAL · Invited
–
Publication: https://www.cambridge.org/core/books/principles-of-deep-learning-theory/3E566F65026D6896DC814A8C31EF3B4C
Presenters
-
Sho Yaida
Facebook AI Research
Authors
-
Sho Yaida
Facebook AI Research
-
-
Information bottleneck approaches to representation learning
ORAL · Invited
–
Presenters
-
David J Schwab
The Graduate Center, CUNY
Authors
-
David J Schwab
The Graduate Center, CUNY
-
-
Towards General and Robust Deep Learning at Scale
ORAL · Invited
–
Publication: Adversarial Feature Desensitization. Pouya Bashivan, Mojtaba Faramarzi, Touraj Laleh, Blake Aaron Richards and Irina Rish. In Proc of NeurIPS 2021.<br><br>Scaling Laws for the Few-Shot Adaptation of Pre-trained Image Classifiers. Gabriele Prato, Simon Guiroy, Ethan Caballero, Irina Rish and Sarath Chandar. arXiv preprint arXiv:2110.06990, 2021.<br><br>Sequoia: A Software Framework to Unify Continual Learning Research. Fabrice Normandin, Florian Golemo, Oleksiy Ostapenko, Pau Rodríguez, Matthew D. Riemer, Julio Hurtado, Khimya Khetarpal, Dominic Zhao, Ryan Lindeborg, Timothée Lesort, Laurent Charlin, Irina Rish and Massimo Caccia. arXiv preprint arXiv:2108.01005<br><br>Invariance Principle Meets Information Bottleneck for Out-of-Distribution Generalization<br>Kartik Ahuja, Ethan Caballero, Dinghuai Zhang, Jean-Christophe Gagnon-Audet, Yoshua Bengio, Ioannis Mitliagkas and Irina Rish. In Proc of NeurIPS 2021.<br><br>Online Fast Adaptation and Knowledge Accumulation: a New Approach to Continual Learning. Massimo Caccia, Pau Rodríguez, Oleksiy Ostapenko, Fabrice Normandin, Min Lin, Lucas Caccia, Issam H. Laradji, Irina Rish, Alexandre Lacoste, David Vázquez, Laurent Charlin. In Proc of NeurIPS-2020.
Presenters
-
Irina Rish
University of Montreal, Mila - Quebec AI Institute
Authors
-
Irina Rish
University of Montreal, Mila - Quebec AI Institute
-
-
Dynamics of Deep Learning: Landscape-dependent Noise, Inverse Einstein Relation, and Flat Minima
ORAL · Invited
–
Publication: 1. "The inverse variance-flatness relation in Stochastic-Gradient-Descent is critical for finding flat minima", Y. Feng and Y. Tu, PNAS, 118 (9), 2021.<br>2. "Phases of learning dynamics in artificial neural networks in the absence or presence of mislabeled data", Y. Feng and Y. Tu, Machine Learning: Science and Technology (MLST), 2, 043001, 2021.
Presenters
-
Yuhai Tu
IBM TJ Watson Research Center, IBM T. J. Watson Research Center
Authors
-
Yuhai Tu
IBM TJ Watson Research Center, IBM T. J. Watson Research Center
-