APS Logo

Predictive modeling of interacting active Brownian particles

ORAL

Abstract

A predictive field-theoretical modeling of the dynamics of interacting active Brownian particles (ABPs) is challenging, but highly desirable since it allows for quantitative results. In this talk, we present an analytic representation for the full pair-distribution function of a homogeneous suspension of ABPs [1] and show how it can be used to derive predictive field theories for the collective dynamics of ABPs. We present predictive local models for both ordinary ABPs [2,3] and active Brownian circle swimmers [4]. The models yield analytic expressions for the density-dependent mean swimming speed, the spinodal corresponding to the onset of motility-induced phase separation, and the associated critical point as well as a mapping between circle swimmers and ordinary ABPs. All analytic results are shown to be in very good agreement with results of corresponding Brownian dynamics simulations and findings from the literature.

[1] J. Jeggle, J. Stenhammar, R. Wittkowski, J. Chem. Phys. 152, 194903 (2020)
[2] J. Bickmann, R. Wittkowski, J. Phys. Condens. Matter 32, 214001 (2020)
[3] J. Bickmann, R. Wittkowski, Phys. Rev. Res. 2, 033241 (2020)
[4] J. Bickmann, S. Bröker, J. Jeggle, R. Wittkowski, arXiv:2010.05262 (2020)

Presenters

  • Raphael Wittkowski

    Institute of Theoretical Physics, University of Münster, Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster

Authors

  • Jens Bickmann

    Institute of Theoretical Physics, University of Münster

  • Julian Jeggle

    Institute of Theoretical Physics, University of Münster, Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster

  • Stephan Bröker

    Institute of Theoretical Physics, University of Münster

  • Joakim Stenhammar

    Division of Physical Chemistry, Lund University

  • Raphael Wittkowski

    Institute of Theoretical Physics, University of Münster, Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster