Quantum Machine Learning
INVITED · Y09 · ID: 381961
Presentations
-
Trainability of Quantum Neural Networks: Barren Plateaus and Scalability
Invited
–
Presenters
-
Patrick Coles
Los Alamos National Laboratory, Theoretical Division, Los Alamos National Laboratory, T-Division, Los Alamos National Laboratory
Authors
-
Patrick Coles
Los Alamos National Laboratory, Theoretical Division, Los Alamos National Laboratory, T-Division, Los Alamos National Laboratory
-
-
Which classes of functions can quantum machine learning models actually learn?
Invited
–
Presenters
-
Maria Schuld
Xanadu
Authors
-
Maria Schuld
Xanadu
-
-
Applications and experimental realizations of quantum generative adversarial networks
Invited
–
Presenters
-
Seth Lloyd
Massachusetts Institute of Technology, Massachusetts Institute of Technology MIT, MIT
Authors
-
Seth Lloyd
Massachusetts Institute of Technology, Massachusetts Institute of Technology MIT, MIT
-
Giacomo De Palma
Massachusetts Institute of Technology MIT
-
Bobak Kiani
Massachusetts Institute of Technology MIT
-
Milad Marvian
Physics/Electrical Engineering, University of New Mexico, MIT, MIT Lincoln Laboratory
-
-
Classical simulation of quantum circuits with neural-network states
Invited
–
Presenters
-
Giuseppe Carleo
EPFL, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), EPF Lausanne
Authors
-
Giuseppe Carleo
EPFL, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), EPF Lausanne
-
-
Progress in Machine Learning with Tensor Networks
Invited
–
Presenters
-
Edwin Stoudenmire
Center for Computational Quantum Physics, Flatiron Institute, Simons Foundation
Authors
-
Edwin Stoudenmire
Center for Computational Quantum Physics, Flatiron Institute, Simons Foundation
-