Machine Learning in Nonlinear Physics and Mechanics I
FOCUS · X05 · ID: 380430
Presentations
-
Calculating the entropy of physical systems with Machine Learning
Invited
–
Presenters
-
Yohai Bar-Sinai
Department of Condensed Matter Physics, Tel Aviv University, Tel Aviv University
Authors
-
Yohai Bar-Sinai
Department of Condensed Matter Physics, Tel Aviv University, Tel Aviv University
-
-
Predicting Erosion Channel First Passage with Machine Learning
ORAL
–
Presenters
-
Isaac Khor
Clark University
Authors
-
Isaac Khor
Clark University
-
Li Han
Clark University
-
Arshad Kudrolli
Clark University, Physics department, Clark University
-
-
Machine Learning Prediction of Avalanche-like Events in Knitted Fabric
ORAL
–
Presenters
-
Adèle Douin
CNRS
Authors
-
Adèle Douin
CNRS
-
Frederic Lechenault
CNRS
-
Jean-Philippe Bruneton
Université de Paris
-
-
What makes a clog: characterizing 2D granular hopper flows using machine learning methods
ORAL
–
Presenters
-
Jesse Hanlan
University of Pennsylvania
Authors
-
Jesse Hanlan
University of Pennsylvania
-
Douglas J Durian
University of Pennsylvania
-
-
Predicting Plasticity in 3D Model Glasses Using the Local Yield Stress Method
ORAL
–
Presenters
-
Dihui Ruan
Johns Hopkins University
Authors
-
Dihui Ruan
Johns Hopkins University
-
Sylvain Patinet
ESPCI
-
Michael Falk
Johns Hopkins University
-
-
Predicting nonlinear stochastic and quantum dynamics without PDEs
ORAL
–
Presenters
-
Alasdair Hastewell
Mathematics, Massachusetts Institute of Technology, MIT, Massachusetts Institute of Technology MIT
Authors
-
Alasdair Hastewell
Mathematics, Massachusetts Institute of Technology, MIT, Massachusetts Institute of Technology MIT
-
Jorn Dunkel
Mathematics, Massachusetts Institute of Technology, MIT, Massachusetts Institute of Technology MIT, Department of Mathematics, Massachusetts Institute of Technology MIT, Mathematics, MIT, Massachusetts Institute of Technology, Department of Mathematics, Massachusetts Institute of Technology
-
-
Soft Matter Physics for Machine Learning: Dynamical loss functions
ORAL
–
Presenters
-
Miguel Ruiz Garcia
Technical University of Madrid, University of Pennsylvania
Authors
-
Miguel Ruiz Garcia
Technical University of Madrid, University of Pennsylvania
-
Ge Zhang
University of Pennsylvania
-
Sam Schoenholz
Google Brain
-
Andrea Liu
University of Pennsylvania, Department of Physics and Astronomy, University of Pennsylvania
-
-
Large-scale visualization with machine learning of dislocation networks in colloidal single crystals
ORAL
–
Presenters
-
Ilya Svetlizky
Harvard University
Authors
-
Ilya Svetlizky
Harvard University
-
Seongsoo Kim
Harvard University
-
Seong Ho Pahng
Harvard University
-
Agnese Curatolo
Harvard University
-
Michael Brenner
Harvard University, School of Engineering and Applied Sciences, Harvard University
-
David Weitz
Harvard University
-
Frans A Spaepen
Harvard University
-
-
Statistical properties of ridge networks in crumpled sheets
ORAL
–
Presenters
-
Catalin Veghes CVeghes@clarku.edu
Clark University
Authors
-
Catalin Veghes CVeghes@clarku.edu
Clark University
-
Li Han
Clark University
-
Arshad Kudrolli
Clark University, Physics department, Clark University
-
-
Machine Learning of Mechanisms in Combinatorial Metamaterials
ORAL
–
Presenters
-
Ryan van Mastrigt
University of Amsterdam
Authors
-
Ryan van Mastrigt
University of Amsterdam
-
Corentin Coulais
Institute of Physics, University of Amsterdam, University of Amsterdam, Univ of Amsterdam, IOP, University of Amsterdam
-
Martin Van Hecke
AMOLF & Leiden University, Leiden University, FOM Inst - Amsterdam, AMOLF/Leiden University
-
Marjolein Dijkstra
Utrecht University
-
-
Simplifying Physics Informed Neural Networks in case of periodicity to address low quality and sparse data while solving differential equations : an application in fluid dynamics.
ORAL
–
Presenters
-
Gaétan Raynaud
Ecole Polytechnique de Montreal
Authors
-
Gaétan Raynaud
Ecole Polytechnique de Montreal
-
Frederick P. Gosselin
Ecole Polytechnique de Montreal, Polytechnique Montreeal
-
Sébastien Houde
Département de génie mécanique, Université Laval
-