APS Logo

Correlated Insulating States at Fractional Fillings of the WS2/WSe2 Moiré Lattice

POSTER

Abstract

Moiré superlattices of van der Waals materials, such as twisted graphene and transitional metal dichalcogenides, have recently emerged as a fascinating platform to study strongly correlated states in two dimensions, thanks to the strong electron interaction in the moiré minibands. In most systems, the correlated states appear when the moiré lattice is filled by integer number of electrons per moiré unit cell. Recent research in the WS2/WSe2 heterobilayer reported the correlated states at fractional fillings of 1/3 and 2/3 holes per moiré unit cell, hinting a long-range electron interaction in this system. In this work, employing a scanning microwave impedance microscopy technique that is sensitive to local electrical properties, we observe a series of correlated insulating states at fractional fillings of the moiré minibands on both electron- and hole-doped sides in angle-aligned WS2/WSe2 hetero-bilayers, with certain states persisting at temperatures up to 120 K. Our Monte Carlo simulations reveal that these insulating states correspond to ordering of electrons in the moiré lattice with a periodicity much larger than the moiré unit cell, indicating a surprisingly strong and long-range interaction beyond the nearest neighbors.

Presenters

  • Xiong Huang

    University of California, Riverside, Department of Physics and Astronomy, University of California, Riverside, University of California, Reverside

Authors

  • Xiong Huang

    University of California, Riverside, Department of Physics and Astronomy, University of California, Riverside, University of California, Reverside

  • Tianmeng Wang

    Rensselaer Polytechnic Institute

  • Shengnan Miao

    Rensselaer Polytechnic Institute

  • Chong Wang

    Department of Physics, Carnegie Mellon University, Physics, Carnegie Mellon University, Carnegie Mellon University, Carnegie Mellon Univ

  • Zhipeng Li

    Rensselaer Polytechnic Institute

  • Zhen Lian

    Rensselaer Polytechnic Institute

  • Takashi Taniguchi

    National Institute for Materials Science, National Institute for Materials Science, Japan, National Institure for Materials Science, Advanced Materials Laboratory, National Institute for Materials Science, NIMS, National Institute of Materials Science, National Institute for Materials Science (NIMS), International Center for Materials Nanoarchitectonics, National Institute for Materials Science, National Institute for Materials Science,1-1 Namiki, National Institute of Material Science, National Institute for Materials Science, Tsukuba, Japan, International Center for Materials Nanoarchitectonics, NIMS, Research Center for Functional Materials, National Institute for Materials Science, National Institute of Materials Science, Tsukuba, Japan, National Institude for Materials Science, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba 305-0044, Japan, International Center for Materials Nanoarchitectonics, National Institute for Materials, NIMS - Japan, National Institute for Materials Science ,Japan, National Institute for Materials Science, Tsukuba, 305-0044, Ibaraki, Japan, National Institute for Material Science, National Institute for Material Science, 1-1 Namiki, Tsukuba 305-0044, Japan, National Institute for Material Science Japan, 8International Center for Materials Nanoarchitectonics, NIMS Tsukuba, National Institute for Materials Science: Namiki, Tsukuba, Ibaraki, JP, National Institue for Material Science, National Institute for Materials Science,1-1 Namiki, Tsukuba, 305-0044, Japan, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan, Research Center for Functional Materials, National In, Research Center for Functional Materials, Japan, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan, International Center for Material Nanoarchitectonics, National Institute for Materials Science, International Center for Materials Nanoarchitectonics, NIMS Suguba, NIMS, Tsukuba, Japan, National Cheng Kung University, National Institute for Materials Science, Namiki 1-1, Tsukuba, 305-0044, Ibaraki, Japan, National institute of material science, Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan, Advanced Materials Laboratory, NIMS, National Institute for Materials Science, International Center for Materials Nanoarchitectonics, National Institute of Material Science, Japan, Tsukuba, National Institute for Materials Science

  • Kenji Watanabe

    National Institute for Materials Science, National Institute for Materials Science, Japan, National Institure for Materials Science, Advanced Materials Laboratory, National Institute for Materials Science, NIMS, National Institute of Materials Science, National Institute for Materials Science (NIMS), Research Center for Functional Materials, National Institute for Materials Science, National Institute for Materials Science,1-1 Namiki, National Institute of Material Science, National Institute for Materials Science, Tsukuba, Japan, Research Center for Functional Materials, NIMS, National Institute of Materials Science, Tsukuba, Japan, National Institude for Materials Science, National Institute for Materials Science, Tsukuba, Ibaraki, Japan, Research Center for Functional Materials, National Institute for Materials Science, Tsukuba 305-0044, Japan, International Center for Materials Nanoarchitectonics, National Institute for Materials, NIMS - Japan, National Institute for Materials Science ,Japan, National Institute for Materials Science, Tsukuba, 305-0044, Ibaraki, Japan, National Institute for Material Science, National Institute for Material Science, 1-1 Namiki, Tsukuba 305-0044, Japan, National Institute for Material Science Japan, NIMS Tsukuba, National Institute for Materials Science, Research Center for Functional Materials, Japan, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan, National Institute for Materials Science: Namiki, Tsukuba, Ibaraki, JP, National Institue for Material Science, National Institute for Materials Science,1-1 Namiki, Tsukuba, 305-0044, Japan, Materials, NIMS, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan, Research Center for Functional Materials, National In, Research Center for Functional Materials, Japan, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, International Center for Materials nanoarchtectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan, NIMS Suguba, NIMS, Tsukuba, Japan, National Institute for Materials Science, Namiki 1-1, Tsukuba, 305-0044, Ibaraki, Japan, National institute of material science, Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan, Advanced Materials Laboratory, NIMS, Research Center for Functional Materials, National Institute for Materials Science, Ibaraki, Japan, National Institute for Materials Science, Research Center for Functional Materials, National Institute of Material Science, Japan, Tsukuba, National Institute for Materials Science

  • Satoshi Okamoto

    Oak Ridge National Lab, Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge National Laboratory

  • Di Xiao

    Carnegie Mellon Univ, Carnegie Mellon University, Department of Physics, Carnegie Mellon University, Physics, Carnegie Mellon University

  • Sufei Shi

    Rensselaer Polytechnic Institute

  • Yongtao Cui

    University of California, Riverside, Department of Physics and Astronomy, University of California, Riverside, University of California, Reverside