APS Logo

Chiral phonons in the pseudogap phase of cuprates

ORAL

Abstract

The nature of the pseudogap phase of cuprates remains a major puzzle. In the cuprate Nd-LSCO, a large negative thermal Hall conductivity κxy was seen to appear when the doping p is lowered below the critical doping of the pseudogap phase p* [1]. Its origin is still unknown. Here we show that the thermal Hall conductivity of the Mott insulator La2CuO4 is roughly the same for heat transport parallel and normal to the CuO2 planes, i.e. κzy(T) ≈ κxy(T) [2]. This shows that the Hall response must come from phonons, as they are the only heat carriers that are able to move with the same ease both normal and parallel to the planes.
For p > p*, both Nd-LSCO and Eu-LSCO show no thermal Hall signal for a heat current normal to the planes, i.e. κzy(T) = 0 [2], which establishes that phonons have zero Hall response outside the pseudogap phase. The negative Hall response appears immediately below p* = 0.23, as shown by the large κzy signal observed in Nd-LSCO and Eu-LSCO with p = 0.21. We see that phonons become chiral inside the pseudogap phase, but the mechanism by which this happens remains to be identified.
[1] Grissonnanche et al., Nature 571, 376 (2019)
[2] Grissonnanche et al., Nat. Phys. (2020). https://doi.org/10.1038/s41567-020-0965-y

Presenters

  • Steven Thériault

    Universite de Sherbrooke (Canada)

Authors

  • Steven Thériault

    Universite de Sherbrooke (Canada)

  • Gael Grissonnanche

    Institut Quantique, Département de physique & RQMP, Université de Sherbrooke, Universite de Sherbrooke (Canada), Universite de Sherbrooke, Cornell University

  • Adrien Gourgout

    Institut Quantique, Département de physique & RQMP, Université de Sherbrooke, Universite de Sherbrooke (Canada), Universite de Sherbrooke

  • Marie-Eve Boulanger

    Universite de Sherbrooke (Canada), Universite de Sherbrooke

  • Etienne Lefrancois

    Universite de Sherbrooke (Canada), Universite de Sherbrooke

  • Francis Laliberte

    Institut Quantique, Département de physique & RQMP, Université de Sherbrooke, Universite de Sherbrooke (Canada), Universite de Sherbrooke, Université de Sherbrooke

  • Amirreza Ataei

    Institut Quantique, Département de physique & RQMP, Université de Sherbrooke, Universite de Sherbrooke (Canada), Universite de Sherbrooke, Université de Sherbrooke

  • Maxime Dion

    Universite de Sherbrooke (Canada), Universite de Sherbrooke, Université de Sherbrooke

  • Sunseng Pyon

    University of Tokyo (Japan), University of Tokyo

  • Jianshi Zhou

    University of Texas at Austin, Materials Science and Engineering Program, Department of Mechanical Engineering, University of Texas at Austin, University of Texas (Austin, USA), University of Texas, Texas Materials Institute, University of Texas at Austin, Materials Science and Engineering Program, Mechanical Engineering, University of Texas at Austin

  • Tomohiro Takayama

    University of Tokyo (Japan), Max Planck Institute for Solid State Research

  • Hidenori Takagi

    University of Tokyo (Japan), Max Planck Institute for Solid State Research, Max Planck Institute for Solid State Research, Stuttgart, Germany

  • Nicolas Doiron-Leyraud

    Universite de Sherbrooke (Canada), Universite de Sherbrooke

  • Louis Taillefer

    Institut Quantique, Département de physique & RQMP, Université de Sherbrooke, Universite de Sherbrooke (Canada), Universite de Sherbrooke, Université de Sherbrooke