APS Logo

Semi-Analytic Method for Rapid Simulation and Optimization of Driven Quantum Systems

ORAL

Abstract

The controls that are used to enact logical operations on qubits and cavities in circuit QED are described by time-dependent Hamiltonians that often include rapid oscillations. In order to fully capture these fast time dynamics in numerical calculations, a very small integration time step is required. In practice, this can be performance intensive impacting the simulation time and memory requirements. In this work, we present a semi-analytic method based on a Dyson expansion for arbitrary time-dependent quantum systems with a diagonal circuit Hamiltonian. This method captures the entire dynamics of the highly oscillatory terms of the Hamiltonian, reducing sensitivity to the chosen step size and providing significant performance improvements over current numerical integrators. This approach also returns the analytic derivative with respect to the drive strength amplitudes, which allows for rapid optimization with routines such as GRAPE to return high fidelity gates.

Presenters

  • Ross Shillito

    Universite de Sherbrooke, Département de Physique, Université de Sherbrooke

Authors

  • Ross Shillito

    Universite de Sherbrooke, Département de Physique, Université de Sherbrooke

  • Jonathan Gross

    Universite de Sherbrooke

  • Agustin Di Paolo

    Physics, Universite de Sherbrooke, Universite de Sherbrooke, Département de Physique, Université de Sherbrooke, Institut quantique & Departement de Physique, Universite de Sherbrooke

  • Elie Genois

    Universite de Sherbrooke

  • Alexandre Blais

    Universite de Sherbrooke, Institut Quantique and Département de Physique, Université de Sherbrooke, Physics, Universite de Sherbrooke, Université de Sherbrook, Université de Sherbrooke, Département de Physique, Université de Sherbrooke, Institut quantique & Departement de Physique, Universite de Sherbrooke, Institut quantique and Departement de physique, Universite de Sherbrooke, Institut Quantique and Department de Physique, Universite de Sherbrooke, Institut quantique and Departement de Physique, Universite de Sherbrooke