A Pseudo-BCS Wavefunction from Density Matrix Decomposition: Application in Auxiliary-Field Quantum Monte Carlo
ORAL
Abstract
We present a method to construct pseudo-BCS wave functions from the one-body density matrix. The resulting many-body wave function, which can be produced for any fermion systems, including those with purely repulsive interactions, has the form of a number-projected BCS form, or antisymmetrized germinal power (AGP). Such wave functions provide a better ansatz for correlated fermion systems than a single Slater determinant, and often better than a linear combination of Slater determinants (for example from a truncated active space calculation). One application of the pseudo-BCS wave function is in auxiliary-field quantum Monte Carlo (AFQMC) calculations as the trial wave function to control the sign/phase problem. AFQMC is often among the most accurate general methods for correlated fermion systems. We show that the pseudo-BCS form further reduces the constraint bias and leads to improved accuracy compared to the usual Slater determinant trial wave functions, using the two-dimensional Hubbard model and real materials as examples.
–
Presenters
-
Zhi-Yu Xiao
William & Mary
Authors
-
Zhi-Yu Xiao
William & Mary
-
Hao Shi
Center for Computational Quantum Physics, Simons foundation, Flatiron institute
-
Shiwei Zhang
Center for Computational Quantum Physics, Simons foundation, Flatiron institute, Center for Computational Quantum Physics, Flatiron Institute; William & Mary, Center of Computational Quantum Physics, Flatiron Institute, New York City, USA, Center for Computational Quantum Physics, Flatiron Institute, Center for Computational Quantum Physics, Flatiron Institute, 162 5th Avenue, New York, NY 10010, Simons Foundation, Center for Computational Quantum Physics