APS Logo

Temperature Chaos does exists in non-equilibrium spin-glass dynamics.

ORAL

Abstract

Spin glasses exhibit a fragile behavior in response to perturbations such as temperature changes. Specifically, arbitrary small changes in the temperature would lead to a complete reorganization of the equilibrium configuration of the spin glass. This equilibrium phenomenon is named Temperature Chaos [1,2].

I shall argue that an effect that closely mimics Temperature Chaos is, indeed, present in the non-equilibrium dynamics of a spin glass. This new phenomenon has been observed in a large-scale simulation in the dedicated computer Janus II [3]. Therefore, we believe that this work lays the ground for the theoretical analysis of temperature-cycling experiments in glassy systems.

We find that, the key quantity which is ruling the non-equilibrium Temperature Chaos phenomenon is the correlation length ξ. Also, we find a crossover between weak and strong chaos regime controlled by a crossover length ξ*.

[1] A. J. Bray and M. A. Moore, Phys. Rev. Lett. 58, 57 (1987)
[2] J. R. Banavar and A. J. Bray, Phys. Rev. B 35, 8888 (1987)
[3] J. Moreno-Gordo et al Work in preparation

Presenters

  • Javier Moreno-Gordo

    University of Zaragoza, Universidad de Saragoza, Instituto de Biocomputacion y fisica de sistemas complejos

Authors

  • Javier Moreno-Gordo

    University of Zaragoza, Universidad de Saragoza, Instituto de Biocomputacion y fisica de sistemas complejos

  • Marco Baity-Jesi

    Eawag

  • Enrico Calore

    University of Ferrara, INFN Ferrara

  • Andrés Cruz

    University of Zaragoza, Universidad de Saragoza, Instituto de Biocomputacion y fisica de sistemas complejos

  • Luis Antonio Fernández

    Universidad Complutense de Madrid, Universitada de Madrid Complutense, Universidad de Fisica teorica

  • Jose Miguel Gil-Narvion

    University of Zaragoza, Universidad de Saragoza, Instituto de Biocomputacion y fisica de sistemas complejos

  • Isidoro Gonzalez-Adalid

    Universidad Complutense de Madrid

  • Antonio Gordillo-Guerrero

    University of Extremadura, Universidad de Saragoza, Instituto de Biocomputacion y fisica de sistemas complejos

  • David Iñiguez

    University of Zaragoza, Universidad de Saragoza, Instituto de Biocomputacion y fisica de sistemas complejos

  • Andrea Maiorano

    INFN, Univ of Rome La Sapienza

  • Enzo Marinari

    Sapienza Università di Roma, Univ of Rome La Sapienza

  • Victor Martin-Mayor

    Universidad Complutense de Madrid, Universitada de Madrid Complutense, Universidad de Fisica teorica, Física Teórica, Univ Complutense

  • Antonio Muñoz-Sudupe

    Universidad Complutense de Madrid, Universitada de Madrid Complutense, Universidad de Fisica teorica

  • Denis Navarro

    University of Zaragoza, Departamento de Ingenierià, Electrònica y Comunicaciones, Zaragoza

  • Ilaria Paga

    Sapienza Università di Roma, Univ of Rome La Sapienza

  • Giorgio Parisi

    Sapienza Università di Roma, Univ of Rome La Sapienza

  • Sergio Perez-Gaviro

    University of Zaragoza, Universidad de Saragoza, Instituto de Biocomputacion y fisica de sistemas complejos

  • Federico Ricci-Tersenghi

    Sapienza Università di Roma, Univ of Rome La Sapienza

  • Juan Jesús Ruiz-Lorenzo

    University of Extremadura, Departiemnto de fisica, Universidad de Extramadura

  • Sebastiano Fabio Schifano

    University of Ferrara, INFN Ferrara

  • Beatriz Seoane

    Universidad Complutense de Madrid, Universitada de Madrid Complutense, Universidad de Fisica teorica

  • Alfonso Tarancon

    University of Zaragoza, Universidad de Saragoza, Instituto de Biocomputacion y fisica de sistemas complejos

  • Raffaele Tripiccione

    University of Ferrara, INFN Ferrara

  • David Yllanes

    Chan Zuckerberg Biohub, Universidad de Saragoza, Instituto de Biocomputacion y fisica de sistemas complejos, Theory, Chan Zuckerberg Biohub