Charge-transfer engineering of oxygen vacancies for tailored ionic conductivity at oxide interfaces
ORAL
Abstract
Exploiting the electronic charge-transfer across oxide interfaces has emerged as a versatile tool to tailor the electronic and magnetic properties of oxides. While the richness in the electronic and magnetic properties of these systems is a main focus of research, the implications for the ionic transport at oxide interfaces have not received much attention so far. In this contribution, we propose that charge-transfer strategies can also be applied to boost ionic charge carrier concentrations at interfaces by orders of magnitude. Based on numerical space-charge modeling, we will illustrate how the ‘p-type’ charge-transfer predicted between SrO-terminated SrTiO3 and LaAlO3 may foster 2-dimensional oxygen ion conduction at the interface. The ion conduction is effectively separated from impurity dopants, which may allow large concentrations of oxygen vacancies to be achieved in the absence of trapping phenomena. The interface promises high ionic conductivity with nanoscale confinement, potentially allowing the
design of field-tunable ionic devices.
design of field-tunable ionic devices.
–
Presenters
-
Felix Gunkel
Tech Univ of Denmark
Authors
-
Felix Gunkel
Tech Univ of Denmark
-
Dennis Christensen
Tech Univ of Denmark
-
Yunzhong Chen
Tech Univ of Denmark
-
Nini Pryds
Tech Univ of Denmark