APS Logo

Charge-Transfer Plasmon Polaritons at Graphene/α-RuCl<sub>3</sub> Interfaces

Invited

Abstract

The fundamental opto-electronic properties of two-dimensional (2D) materials can be tailored based on their nanoscale charge environment. While electrostatic doping offers a means of wholesale tuning of 2D charge densities, the minimum size of charge features is limited by fields fringing through relatively thick gate insulators. Conversely, charge transfer at the interface of two atomically-thin layers with different work functions should not be subject to such limitations. Specifically, the large work function of α-RuCl3 (6.1 eV) makes it an ideal 2D electron acceptor. In our study, we exploit this behavior to generate charge-transfer plasmon polaritons (CPPs) in graphene/α-RuCl3 heterostructures. Using infrared near-field optical microscopy we measure the CPP dispersion, yielding a quantitative measure of the graphene Fermi energy (~0.6 eV) and thus the charge exchanged between α-RuCl3 and graphene (~2.7x1013 cm–2). Concurrently, we observe dispersive edge modes and internal “circular” CPPs which reveal sharp (< 50 nm) changes in the graphene optical conductivity that correspond to nanoscale modulations in the graphene doping level. Further analysis of the CPP losses implies the presence of emergent optical conductivity in the doped interfacial layer of α-RuCl3 and suggests that it no longer possesses a Mott insulating ground state. Our results demonstrate that using high work function materials such as α-RuCl3 in Van der Waals heterostructures presents new opportunities for controlling the local charge carrier density of graphene and other 2D materials on nanometer length scales in excess of what can be achieved with an external gate.

Presenters

  • Daniel Joseph Rizzo

    Physics, Columbia University, Columbia University

Authors

  • Daniel Joseph Rizzo

    Physics, Columbia University, Columbia University

  • Bjarke S. Jessen

    Columbia University, Department of Physics, Columbia University

  • Zhiyuan Sun

    Columbia University, Department of Physics, Columbia University, Columbia Univ

  • Francesco Ruta

    Department of Physics, Columbia University, Columbia University, Columbia Univ

  • Jin Zhang

    Max Planck Institute for Structure and Dynamics of Matter and Center for Free-Electron Laser Science

  • Jiaqiang Yan

    Materials Science and Technology Division, Oak Ridge National Lab, Oak Ridge National Laboratory, University of Tennessee, Oak Ridge National Lab, Materials Science and Technology Division, Oak Ridge National Laboratory, Materials Science and Technology, Oak Ridge National Laboratory, Oak Ridge National Laboratory, Materials Science and Technology Division

  • Lede Xian

    Max Planck Institute for the Structure and Dynamics of Matter, Theory, Max Planck Institute for the Structure and Dynamics of Matter, Physics, Max Planck Institute, Max Planck Institute for Structure and Dynamics of Matter and Center for Free-Electron Laser Science, Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, 22761 Hamburg, Germany, Songshan Lake Materials Laboratory, Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany

  • Alexander S McLeod

    Columbia University, Department of Physics, Columbia University, Columbia Univ

  • Michael Berkowitz

    Columbia University, Columbia Univ

  • Kenji Watanabe

    National Institute for Materials Science, National Institute for Materials Science, Japan, National Institure for Materials Science, Advanced Materials Laboratory, National Institute for Materials Science, NIMS, National Institute of Materials Science, National Institute for Materials Science (NIMS), Research Center for Functional Materials, National Institute for Materials Science, National Institute for Materials Science,1-1 Namiki, National Institute of Material Science, National Institute for Materials Science, Tsukuba, Japan, Research Center for Functional Materials, NIMS, National Institute of Materials Science, Tsukuba, Japan, National Institude for Materials Science, National Institute for Materials Science, Tsukuba, Ibaraki, Japan, Research Center for Functional Materials, National Institute for Materials Science, Tsukuba 305-0044, Japan, International Center for Materials Nanoarchitectonics, National Institute for Materials, NIMS - Japan, National Institute for Materials Science ,Japan, National Institute for Materials Science, Tsukuba, 305-0044, Ibaraki, Japan, National Institute for Material Science, National Institute for Material Science, 1-1 Namiki, Tsukuba 305-0044, Japan, National Institute for Material Science Japan, NIMS Tsukuba, National Institute for Materials Science, Research Center for Functional Materials, Japan, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan, National Institute for Materials Science: Namiki, Tsukuba, Ibaraki, JP, National Institue for Material Science, National Institute for Materials Science,1-1 Namiki, Tsukuba, 305-0044, Japan, Materials, NIMS, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan, Research Center for Functional Materials, National In, Research Center for Functional Materials, Japan, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, International Center for Materials nanoarchtectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan, NIMS Suguba, NIMS, Tsukuba, Japan, National Institute for Materials Science, Namiki 1-1, Tsukuba, 305-0044, Ibaraki, Japan, National institute of material science, Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan, Advanced Materials Laboratory, NIMS, Research Center for Functional Materials, National Institute for Materials Science, Ibaraki, Japan, National Institute for Materials Science, Research Center for Functional Materials, National Institute of Material Science, Japan, Tsukuba, National Institute for Materials Science

  • Takashi Taniguchi

    National Institute for Materials Science, National Institute for Materials Science, Japan, National Institure for Materials Science, Advanced Materials Laboratory, National Institute for Materials Science, NIMS, National Institute of Materials Science, National Institute for Materials Science (NIMS), International Center for Materials Nanoarchitectonics, National Institute for Materials Science, National Institute for Materials Science,1-1 Namiki, National Institute of Material Science, National Institute for Materials Science, Tsukuba, Japan, International Center for Materials Nanoarchitectonics, NIMS, Research Center for Functional Materials, National Institute for Materials Science, National Institute of Materials Science, Tsukuba, Japan, National Institude for Materials Science, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba 305-0044, Japan, International Center for Materials Nanoarchitectonics, National Institute for Materials, NIMS - Japan, National Institute for Materials Science ,Japan, National Institute for Materials Science, Tsukuba, 305-0044, Ibaraki, Japan, National Institute for Material Science, National Institute for Material Science, 1-1 Namiki, Tsukuba 305-0044, Japan, National Institute for Material Science Japan, 8International Center for Materials Nanoarchitectonics, NIMS Tsukuba, National Institute for Materials Science: Namiki, Tsukuba, Ibaraki, JP, National Institue for Material Science, National Institute for Materials Science,1-1 Namiki, Tsukuba, 305-0044, Japan, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan, Research Center for Functional Materials, National In, Research Center for Functional Materials, Japan, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan, International Center for Material Nanoarchitectonics, National Institute for Materials Science, International Center for Materials Nanoarchitectonics, NIMS Suguba, NIMS, Tsukuba, Japan, National Cheng Kung University, National Institute for Materials Science, Namiki 1-1, Tsukuba, 305-0044, Ibaraki, Japan, National institute of material science, Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan, Advanced Materials Laboratory, NIMS, National Institute for Materials Science, International Center for Materials Nanoarchitectonics, National Institute of Material Science, Japan, Tsukuba, National Institute for Materials Science

  • Stephen E Nagler

    Oak Ridge National Lab, Oak Ridge National Laboratory, Oakridge National Laboratory, Neutron Scattering Division, Oak Ridge National Laboratory

  • David George Mandrus

    Materials Science and Technology Division, Oak Ridge National Labratory, Materials Science and Engineering, University of Tennessee, Department of Materials Science and Engineering, University of Tennessee, University of Tennessee, Department of Materials Science and Engineering, University of Tennessee Knoxville, Department of Materials Science & Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA, Oakridge National Laboratory, Materials Science and Engineering, University of Tennessee, Knoxville, Oak Ridge National Laboratory, University of Tennessee - Knoxville, Materials Science and Technology Division, Oak Ridge National Laboratory, Department of Physics, University of Tennessee Knoxville, Materials Science and Technology, Oak Ridge National Laboratory, Oak Ridge National Laboratory, Materials Science and Technology Division, Department of Materials Science, The University of Tennessee, University of Tennessee, Knoxville

  • Angel Rubio

    Max Plank Institute for the Structure and Dynamics of Matter; Center for Computational Quantum Physics Flatiron Institute, Max Planck Institute for the Structure and Dynamics of Matter, Theory, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Inst Structure & Dynamics of Matter, Physics, Max Planck Institute, Max Planck Institute for Structure and Dynamics of Matter and Center for Free-Electron Laser Science, Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, 22761 Hamburg, Germany, Max Planck Institute for the Structure and Dynamics of Matter and Center Free-Electron Laser Science, Hamburg, Germany, Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany, MPSD Hamburg, Max Planck Institute, Max Planck Inst Structure & Dynamics of Matter; Center for Computational Quantum Physics Flatiron Institute, Simons Foundation NY, USA, Theory, Max Planck Inst Structure & Dynamics of Matter

  • Michael Fogler

    University of California, San Diego, Department of Physics, University of California San Diego, UC San Diego, Department of Physics, University of California, San Diego, UCSD, University of California San Diego

  • Andrew Millis

    Columbia University, Department of Physics, Columbia University, Flatiron Institute, Columbia Univ, Center for Computational Quantum Physics, Flatiron Institute, Flatiron Institute; Columbia Univ., Columbia University and Center for Computational Quantum Physics, Flatiron Institute

  • James Hone

    Columbia Univ, Columbia University, Department of Mechanical Engineering, Columbia University, Mechanical Engineering, Columbia University

  • Cory Dean

    Columbia University, Department of Physics, Columbia University, Physics, Columbia University, Columbia Univ

  • Dmitri Basov

    Columbia University, Department of Physics, Columbia University, Physics, Columbia University, Columbia Univ