APS Logo

Reinforcement Learning-based control of a cavity system with non linear measurement

ORAL

Abstract

Quantum states of the radiation field inside cavities have emerged as a promising new platform for quantum information processing. One major challenge is to find efficient ways to prepare nonclassical quantum states. Recently, deep reinforcement learning (DRL) has been introduced into quantum physics applications. We show that indeed DRL techniques can discover such strategies from scratch, by employing feedback based on nonlinear measurements, and create nonclassical states even in the absence of nonlinear controls.
We demonstrate the excellent performance of this scheme, discuss remaining challenges and potential experimental implementations.

Presenters

  • Riccardo Porotti

    Max Planck Institute for the Science of Light

Authors

  • Riccardo Porotti

    Max Planck Institute for the Science of Light

  • Florian Marquardt

    Univ Erlangen Nuremberg, Max Planck Inst for Sci Light, Max Planck Institute for the Science of Light

  • Antoine Essig

    Université Lyon, ENS de Lyon, Université Claude Bernard, CNRS, Laboratoire de Physique,F-69342 Lyon, France, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique,F-69342 Lyon,France

  • Audrey Bienfait

    University of Chicago, Université Lyon, ENS de Lyon, Université Claude Bernard, CNRS, Laboratoire de Physique,F-69342 Lyon, France, ENS de Lyon, Ecole Normale Superieure de Lyon, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique,F-69342 Lyon, France, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique,F-69342 Lyon,France

  • Benjamin Huard

    Université Lyon, ENS de Lyon, Université Claude Bernard, CNRS, Laboratoire de Physique,F-69342 Lyon, France, ENS de Lyon, ENS Lyon, Ecole Normale Superieure de Lyon, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique,F-69342 Lyon, France, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique,F-69342 Lyon,France