APS Logo

Sculpting Crystals One Burgers Vector at a Time: Towards Colloidal Lattice Robot Swarms

ORAL

Abstract

Plastic deformation of crystalline materials with isotropic particle attractions proceeds by the creation and migration of dislocations under the influence of external forces. If dislocations are produced and migrated under the action of local forces, then material shape change can occur without the application of surface forces. We investigate how particles with variable diameters can be embedded in colloidal monolayers to produce dislocations on demand. We find in simulation that when embedded clusters of variable diameter particles are taken through multiple cycles of swelling and shrinking, large cumulative plastic slip is produced by the creation and biased motion of dislocation pairs in the solid for embedded clusters of particular geometries. In this way, dislocations emitted by these clusters (biased `dislocation emitters') can be used to reshape colloidal matter. Our results are also applicable to larger scale swarms of robotic particles that organize into dense ordered 2D arrangements. We conclude with a discussion of how dislocations fulfill for colloids the role sought by `meta modules' in lattice robotics research, and show how successive applications of shear as a unit operation can produce shape change through slicing and swirling.

Presenters

  • Sharon C Glotzer

    University of Michigan, Chemical Engineering, University of Michigan - Ann Arbor, Chemical Engineering, University of Michigan

Authors

  • Bryan VanSaders

    University of Chicago, James Franck Institute, University of Chicago

  • Sharon C Glotzer

    University of Michigan, Chemical Engineering, University of Michigan - Ann Arbor, Chemical Engineering, University of Michigan