Topological Nodal Planes in Magnetic Space Groups
ORAL
Abstract
Topological semimetals and metals may contain nodal points or lines, i.e., zero- or one-dimensional crossings in the energy bands. In the present work we discuss an extension to two-dimensional nodal features. These nodal planes are enforced in systems described by certain nonsymmorphic space groups. We give criteria to predict nodal planes and consider in the process paramagnetic as well as magnetic space groups. Based on an analysis of symmetry eigenvalues we identify space groups with a necessarily non-zero Chern number associated to the nodal planes. The arguments are supported by minimal models and explicit calculation of the topological invariants. We have identified a number of materials with topological nodal planes, among them MnSi in its ferromagnetic phase.
–
Presenters
-
Moritz Hirschmann
Quantum Many-Body Theory, Max-Planck-Institute for Solid State Research
Authors
-
Moritz Hirschmann
Quantum Many-Body Theory, Max-Planck-Institute for Solid State Research
-
Kirill Alpin
Quantum Many-Body Theory, Max-Planck-Institute for Solid State Research
-
Marc Wilde
Physik Department, Technische Universität München
-
Matthias Dodenhöft
Physik Department, Technische Universität München
-
Arthur Niedermayr
Physik Department, Technische Universität München
-
Andreas Bauer
Physik Department, Technische Universität München
-
Christian Pfleiderer
Physik Department, Technische Universität München
-
Andreas P Schnyder
Quantum Many-Body Theory, Max-Planck-Institute for Solid State Research, Max Planck Institute for Solid State Physics