Multi-zone parallel qubit addressing via multi-wavelength integrated photonics
ORAL
Abstract
The integration of photonics within surface-electrode ion-trap chips could enable the development of larger quantum computers and portable quantum sensors. Recently, we demonstrated operation of an ion-trap chip where integrated photonics delivered all of the required wavelengths, from violet to infrared, necessary for control and read-out of Sr+ qubits[1]. Laser light was coupled onto the chip via an optical-fiber array, creating an inherently stable optical path that we use to demonstrate qubit coherence resilient to platform vibrations. Contemporaneously high fidelity two qubit gates using integrated photonics were also demonstrated [2]. Here we explore using multiple zones of interaction to perform parallel qubit operations on multiple ions using parallel integrated beam paths. Recent improvements to our photonics platform have improved our grating beam targeting accuracy, improved grating efficiency, reduced blue propagation loss and input coupling loss.
Niffenegger, R. J., et al. "Integrated multi-wavelength control of an ion qubit." Nature 586.7830 (2020): 538-542.
Mehta, Karan K., et al. "Integrated optical multi-ion quantum logic." Nature 586.7830 (2020): 533-537.
Niffenegger, R. J., et al. "Integrated multi-wavelength control of an ion qubit." Nature 586.7830 (2020): 538-542.
Mehta, Karan K., et al. "Integrated optical multi-ion quantum logic." Nature 586.7830 (2020): 533-537.
–
Presenters
-
Robert Niffenegger
MIT Lincoln Lab
Authors
-
Robert Niffenegger
MIT Lincoln Lab
-
Jules M Stuart
Physics, MIT
-
David L Reens
MIT Lincoln Lab
-
Cheryl Sorace-Agaskar
MIT Lincoln Lab
-
David Kharas
MIT Lincoln Lab
-
Suraj Bramhavar
MIT Lincoln Lab
-
William Loh
MIT Lincoln Lab
-
Gavin West
MIT Lincoln Lab
-
Ryan Maxson
MIT Lincoln Lab
-
Alex Medeiros
MIT Lincoln Lab
-
Colin D. Bruzewicz
MIT Lincoln Lab
-
Robert McConnell
MIT Lincoln Lab
-
Jeremy Sage
MIT Lincoln Lab
-
John Chiaverini
MIT Lincoln Lab