APS Logo

Integration of Multi-layer Black Phosphorus into Photoconductive Antennas for THz Emission

ORAL

Abstract

We fabricated, characterized, and modeled photoconductive antennas by using black phosphorus (BP; ~ 40 nm thin film as the photoconductor) and hexagonal boron nitride (hBN; a capping layer to prevent the oxidation of BP). BP and hBN flakes were transferred inside a nitrogen glovebox onto dipole antennas (fabricated on oxidized high-resistivity Si substrates). The thickness of the BP and hBN were optimized for maximum absorption within the BP layer using the transfer matrix method. The armchair axis of BP flakes (determined by reflection anisotropy) was aligned with the anode-cathode gap of the antenna. Under illumination with 100 fs pulses at 780 (1560) nm, photocurrent imaging shows a bias-dependent maximum photocurrent localized to the antenna gap with a peak photoconductivity 1 (2) S/cm in the linear regime of bias [1]. Device performance was modeled numerically by solving Maxwell’s and the drift-diffusion equations to obtain the photocurrent density in response to pulsed laser excitation, showing qualitative agreement with the experimental observations. These devices present a step toward high-performance THz photoconductive antennas using BP.

[1] Doha, M. H. et al. (2020). J. Appl. Phys, 128(6), 063104.

Presenters

  • M. Hasan Doha

    Physics, University of Arkansas

Authors

  • M. Hasan Doha

    Physics, University of Arkansas

  • J. I. Santos Batista

    Electrical Engineering, University of Arkansas

  • Ahmad Fuad Rawwagah

    Physics, University of Arkansas

  • Josh P. Thompson

    University of Arkansas, Physics, University of Arkansas

  • Arash Fereidouni

    University of Arkansas, Physics, University of Arkansas, Department of Physics, University of Arkansas

  • Kenji Watanabe

    National Institute for Materials Science, National Institute for Materials Science, Japan, National Institure for Materials Science, Advanced Materials Laboratory, National Institute for Materials Science, NIMS, National Institute of Materials Science, National Institute for Materials Science (NIMS), Research Center for Functional Materials, National Institute for Materials Science, National Institute for Materials Science,1-1 Namiki, National Institute of Material Science, National Institute for Materials Science, Tsukuba, Japan, Research Center for Functional Materials, NIMS, National Institute of Materials Science, Tsukuba, Japan, National Institude for Materials Science, National Institute for Materials Science, Tsukuba, Ibaraki, Japan, Research Center for Functional Materials, National Institute for Materials Science, Tsukuba 305-0044, Japan, International Center for Materials Nanoarchitectonics, National Institute for Materials, NIMS - Japan, National Institute for Materials Science ,Japan, National Institute for Materials Science, Tsukuba, 305-0044, Ibaraki, Japan, National Institute for Material Science, National Institute for Material Science, 1-1 Namiki, Tsukuba 305-0044, Japan, National Institute for Material Science Japan, NIMS Tsukuba, National Institute for Materials Science, Research Center for Functional Materials, Japan, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan, National Institute for Materials Science: Namiki, Tsukuba, Ibaraki, JP, National Institue for Material Science, National Institute for Materials Science,1-1 Namiki, Tsukuba, 305-0044, Japan, Materials, NIMS, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan, Research Center for Functional Materials, National In, Research Center for Functional Materials, Japan, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, International Center for Materials nanoarchtectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan, NIMS Suguba, NIMS, Tsukuba, Japan, National Institute for Materials Science, Namiki 1-1, Tsukuba, 305-0044, Ibaraki, Japan, National institute of material science, Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan, Advanced Materials Laboratory, NIMS, Research Center for Functional Materials, National Institute for Materials Science, Ibaraki, Japan, National Institute for Materials Science, Research Center for Functional Materials, National Institute of Material Science, Japan, Tsukuba, National Institute for Materials Science

  • Takashi Taniguchi

    National Institute for Materials Science, National Institute for Materials Science, Japan, National Institure for Materials Science, Advanced Materials Laboratory, National Institute for Materials Science, NIMS, National Institute of Materials Science, National Institute for Materials Science (NIMS), International Center for Materials Nanoarchitectonics, National Institute for Materials Science, National Institute for Materials Science,1-1 Namiki, National Institute of Material Science, National Institute for Materials Science, Tsukuba, Japan, International Center for Materials Nanoarchitectonics, NIMS, Research Center for Functional Materials, National Institute for Materials Science, National Institute of Materials Science, Tsukuba, Japan, National Institude for Materials Science, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba 305-0044, Japan, International Center for Materials Nanoarchitectonics, National Institute for Materials, NIMS - Japan, National Institute for Materials Science ,Japan, National Institute for Materials Science, Tsukuba, 305-0044, Ibaraki, Japan, National Institute for Material Science, National Institute for Material Science, 1-1 Namiki, Tsukuba 305-0044, Japan, National Institute for Material Science Japan, 8International Center for Materials Nanoarchitectonics, NIMS Tsukuba, National Institute for Materials Science: Namiki, Tsukuba, Ibaraki, JP, National Institue for Material Science, National Institute for Materials Science,1-1 Namiki, Tsukuba, 305-0044, Japan, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan, Research Center for Functional Materials, National In, Research Center for Functional Materials, Japan, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan, International Center for Material Nanoarchitectonics, National Institute for Materials Science, International Center for Materials Nanoarchitectonics, NIMS Suguba, NIMS, Tsukuba, Japan, National Cheng Kung University, National Institute for Materials Science, Namiki 1-1, Tsukuba, 305-0044, Ibaraki, Japan, National institute of material science, Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan, Advanced Materials Laboratory, NIMS, National Institute for Materials Science, International Center for Materials Nanoarchitectonics, National Institute of Material Science, Japan, Tsukuba, National Institute for Materials Science

  • Magda El-Shenawee

    Electrical Engineering, University of Arkansas

  • Hugh O. H. Churchill

    University of Arkansas, Department of Physics, University of Arkansas, Physics, University of Arkansas