APS Logo

Hardware-efficient error-correcting codes for large nuclear spins

ORAL

Abstract

Improving the performance of near-term quantum devices involves correcting dominant sources of error. Donor nuclear spins in silicon are attractive qubits as they are compact, robust, and show record coherence time for solid-state systems. Amazingly, these coherence times are still “brief” with respect to the near-infinite relaxation times of the donors’ spins. This observation motivates a hardware-efficient approach to error correction that corrects the dominant dephasing errors. Here we present a protocol consisting of experimentally feasible operations that leverages the extended Hilbert space of a large nuclear spin to correct dephasing errors. Simulations, using state-of-the-art manipulation fidelities, predict significant improvement in reachable logical fidelity over existing spin quantum-error-correction protocols. These results provide a realizable blueprint for a corrected spin-based qubit using built-in error correction schemes.

Presenters

  • Jonathan Gross

    Universite de Sherbrooke

Authors

  • Jonathan Gross

    Universite de Sherbrooke

  • Clément Godfrin

    Universite de Sherbrooke, Institut Quantique, Universite de Sherbrooke

  • Alexandre Blais

    Universite de Sherbrooke, Institut Quantique and Département de Physique, Université de Sherbrooke, Physics, Universite de Sherbrooke, Université de Sherbrook, Université de Sherbrooke, Département de Physique, Université de Sherbrooke, Institut quantique & Departement de Physique, Universite de Sherbrooke, Institut quantique and Departement de physique, Universite de Sherbrooke, Institut Quantique and Department de Physique, Universite de Sherbrooke, Institut quantique and Departement de Physique, Universite de Sherbrooke

  • Eva Dupont-Ferrier

    Universite de Sherbrooke, Institut Quantique, Universite de Sherbrooke